Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 020305    DOI: 10.1088/1674-1056/23/2/020305
GENERAL Prev   Next  

Quantum state measurement in double quantum dots with a radio-frequency quantum point contact

Yan Lei (严蕾), Wang Hai-Xia (王海霞), Yin Wen (殷雯), Wang Fang-Wei (王芳卫)
Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  We study the dynamics of two electron spins in coupled quantum dots (CQDs) monitored by a quantum point contact (QPC) detector. Their quantum state can be measured by embedding the QPC in an LC circuit. We derive the Bloch-type rate equations of the reduced density matrix for CQDs. Special attention is paid to the numerical results for the weak measurement condintion under a strong Coulomb interaction. It is shown that the evolution of QPC current always follows that of electron occupation in the right dot. In addition, we find that the output voltage of the circuit can reflect the evolution of QPC current when the circuit and QPC are approximately equal in frequency. In particular, the wave shape of the output voltage can be improved by adjusting the circuit resonance frequency and bandwidth.
Keywords:  measurement      quantum state      output voltage      circuit parameter  
Received:  13 August 2013      Revised:  12 September 2013      Accepted manuscript online: 
PACS:  03.65.Yz (Decoherence; open systems; quantum statistical methods)  
  03.67.Lx (Quantum computation architectures and implementations)  
  73.23.Hk (Coulomb blockade; single-electron tunneling)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11174358) and the National Basic Research Program of China (Grant No. 2010CB833102).
Corresponding Authors:  Yin Wen     E-mail:  wenyin@aphy.iphy.ac.cn
About author:  03.65.Yz; 03.67.Lx; 73.23.Hk

Cite this article: 

Yan Lei (严蕾), Wang Hai-Xia (王海霞), Yin Wen (殷雯), Wang Fang-Wei (王芳卫) Quantum state measurement in double quantum dots with a radio-frequency quantum point contact 2014 Chin. Phys. B 23 020305

[1] Masia F, Accanto N, Langbein W and Borri P 2012 Phys. Rev. Lett. 108 087401
[2] Stemeroff N and de Sousa R 2011 Phys. Rev. Lett. 107 197602
[3] Petta J R, Johnson A C, Yacoby A, Marcus C M, Hanson M P and Gossard A C 2005 Phys. Rev. B 72 161301
[4] Nakamura Y, Pashkin Yu A and Tsai J S 1999 Nature 398 786
[5] Goan H S, Milburn G J, Wiseman H M and Sun H B 2001 Phys. Rev. B 63 125326
[6] Gurvitz S A 2005 Phys. Rev. B 72 073303
[7] Gustavsson S, Leturcq R, Simovič B, Schleser R, Ihn T, Studerus P, Ensslin K, Driscoll D C and Gossard A C 2006 Phys. Rev. Lett. 96 076605
[8] Gilad T and Gurvitz S A 2006 Phys. Rev. Lett. 97 116806
[9] Fischer J, Coish W A, Bulaev D V and Loss D 2008 Phys. Rev. B 78 155329
[10] Petersson K D, Petta J R, Lu H and Gossard A C 2010 Phys. Rev. Lett. 105 246804
[11] Bennett C H 1995 Phys. Today 48(10) 24
[12] Colless J I, Mahoney A C, Hornibrook J M, Doherty A C, Lu H, Gossard A C and Reilly D J 2013 Phys. Rev. Lett. 110 046805
[13] Wang Q, Xie H Q, Jiao H J, Li Z J and Nie Y H 2012 Chin. Phys. B 21 117310
[14] Oxtoby N P, Gambetta J and Wiseman H M 2008 Phys. Rev. B 77 125304
[15] Clarke J 1989 Proc. IEEE 77 1208
[16] Gurvitz S A and Prager Y S 1996 Phys. Rev. B 53 15932
[17] Gurvitz S A 1997 Phys. Rev. B 56 15215
[18] Wootters W K 1998 Phys. Rev. Lett. 80 2245
[19] Gustavsson S, Studer M, Leturcq R, Ihn T, Ensslin K, Driscoll D C and Gossard A C 2007 Phys. Rev. Lett. 99 206804
[20] Qin H and Williams D A 2006 Appl. Phys. Lett. 88 203506
[21] Cassidy M C, Dzurak A S, Clark R G, Petersson K D, Farrer I, Ritchie D A and Smith C G 2007 Appl. Phys. Lett. 91 222104
[22] Petersson K D, Smith C G, Anderson D, Atkinson P, Jones G A C and Ritchie D A 2010 Nano Lett. 10 2789
[23] Reilly D J, Marcus C M, Hanson M P and Gossard A C 2007 Appl. Phys. Lett. 91 162101
[24] Elzerman M, Hanson R, van Beveren L H W, Witkamp B, Vandersypen L M K and Kouwenhoven L P 2004 Nature 430 431
[25] Oxtoby N P, Warszawski P, Wiseman H M, Sun H B and Polkinghorne R E S 2005 Phys. Rev. B 71 165317
[1] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[2] Effective dynamics and quantum state engineering by periodic kicks
Zhi-Cheng Shi(施志成), Zhen Chen(陈阵), Jian-Hui Wang(王建辉), Yan Xia(夏岩), and X X Yi(衣学喜). Chin. Phys. B, 2023, 32(4): 044210.
[3] Application of the body of revolution finite-element method in a re-entrant cavity for fast and accurate dielectric parameter measurements
Tianqi Feng(冯天琦), Chengyong Yu(余承勇), En Li(李恩), and Yu Shi(石玉). Chin. Phys. B, 2023, 32(3): 030101.
[4] Security of the traditional quantum key distribution protocolswith finite-key lengths
Bao Feng(冯宝), Hai-Dong Huang(黄海东), Yu-Xiang Bian(卞宇翔), Wei Jia(贾玮), Xing-Yu Zhou(周星宇), and Qin Wang(王琴). Chin. Phys. B, 2023, 32(3): 030307.
[5] Quantitative measurement of the charge carrier concentration using dielectric force microscopy
Junqi Lai(赖君奇), Bowen Chen(陈博文), Zhiwei Xing(邢志伟), Xuefei Li(李雪飞), Shulong Lu(陆书龙), Qi Chen(陈琪), and Liwei Chen(陈立桅). Chin. Phys. B, 2023, 32(3): 037202.
[6] In situ temperature measurement of vapor based on atomic speed selection
Lu Yu(于露), Li Cao(曹俐), Ziqian Yue(岳子骞), Lin Li(李林), and Yueyang Zhai(翟跃阳). Chin. Phys. B, 2023, 32(2): 020602.
[7] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[8] Improving the teleportation of quantum Fisher information under non-Markovian environment
Yan-Ling Li(李艳玲), Yi-Bo Zeng(曾艺博), Lin Yao(姚林), and Xing Xiao(肖兴). Chin. Phys. B, 2023, 32(1): 010303.
[9] Laboratory demonstration of geopotential measurement using transportable optical clocks
Dao-Xin Liu(刘道信), Jian Cao(曹健), Jin-Bo Yuan(袁金波), Kai-Feng Cui(崔凯枫), Yi Yuan(袁易),Ping Zhang(张平), Si-Jia Chao(晁思嘉), Hua-Lin Shu(舒华林), and Xue-Ren Huang(黄学人). Chin. Phys. B, 2023, 32(1): 010601.
[10] Improvement of a continuous-variable measurement-device-independent quantum key distribution system via quantum scissors
Lingzhi Kong(孔令志), Weiqi Liu(刘维琪), Fan Jing(荆凡), Zhe-Kun Zhang(张哲坤), Jin Qi(齐锦), and Chen He(贺晨). Chin. Phys. B, 2022, 31(9): 090304.
[11] New designed helical resonator to improve measurement accuracy of magic radio frequency
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红). Chin. Phys. B, 2022, 31(9): 093201.
[12] Direct measurement of two-qubit phononic entangled states via optomechanical interactions
A-Peng Liu(刘阿鹏), Liu-Yong Cheng(程留永), Qi Guo(郭奇), Shi-Lei Su(苏石磊), Hong-Fu Wang(王洪福), and Shou Zhang(张寿). Chin. Phys. B, 2022, 31(8): 080307.
[13] Optical fiber FBG linear sensing systems for the on-line monitoring of airborne high temperature air duct leakage
Qinyu Wang(王沁宇), Xinglin Tong(童杏林), Cui Zhang(张翠), Chengwei Deng(邓承伟), Siyu Xu(许思宇), and Jingchuang Wei(魏敬闯). Chin. Phys. B, 2022, 31(8): 084204.
[14] Precise determination of characteristic laser frequencies by an Er-doped fiber optical frequency comb
Shiying Cao(曹士英), Yi Han(韩羿), Yongjin Ding(丁永今), Baike Lin(林百科), and Zhanjun Fang(方占军). Chin. Phys. B, 2022, 31(7): 074207.
[15] Quantum speed limit of the double quantum dot in pure dephasing environment under measurement
Zhenyu Lin(林振宇), Tian Liu(刘天), Zongliang Li(李宗良), Yanhui Zhang(张延惠), and Kang Lan(蓝康). Chin. Phys. B, 2022, 31(7): 070307.
No Suggested Reading articles found!