Laboratory demonstration of geopotential measurement using transportable optical clocks
Dao-Xin Liu(刘道信)1,2,3, Jian Cao(曹健)1,2,†, Jin-Bo Yuan(袁金波)1,2, Kai-Feng Cui(崔凯枫)1,2, Yi Yuan(袁易)1,2,3, Ping Zhang(张平)1,2,3, Si-Jia Chao(晁思嘉)1,2, Hua-Lin Shu(舒华林)1,2, and Xue-Ren Huang(黄学人)1,2,4,‡
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; 2 Key Laboratory of Atomic Frequency Standards, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; 3 University of the Chinese Academy of Sciences, Beijing 100049, China; 4 Wuhan Institute of Quantum Technology, Wuhan 430206, China
Abstract We report an experimental demonstration of geopotential difference measurement using a pair of transportable Ca optical clocks (TOC-729-1 and TOC-729-3) in the laboratory, each of them has an uncertainty of and an instability of . Referenced to a stationary clock of TOC-729-1, the geopotential difference measurements are realized by moving TOC-729-3 to three different locations and the relevant altitude differences are measured with uncertainties at the level of 20 cm. After correcting the systematic shifts (including gravitational red shift), the two-clock frequency difference is measured to be , considering both the statistic and the systematic uncertainties. The frequency difference between these two clocks is within their respective uncertainties, verifying the reliability of transportable Ca optical clocks at the low level of 10.
Fund: Project supported by the Basic Frontier Science Research Program of Chinese Academy of Sciences (Grant No. ZDBS-LY-DQC028), the National Key Research and Development Program of China (Grant No. 2017YFA0304404), and the National Natural Science Foundation of China (Grant No. 11674357).
Dao-Xin Liu(刘道信), Jian Cao(曹健), Jin-Bo Yuan(袁金波), Kai-Feng Cui(崔凯枫), Yi Yuan(袁易),Ping Zhang(张平), Si-Jia Chao(晁思嘉), Hua-Lin Shu(舒华林), and Xue-Ren Huang(黄学人) Laboratory demonstration of geopotential measurement using transportable optical clocks 2023 Chin. Phys. B 32 010601
[1] Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B and Leibrandt D R 2019 Phys. Rev. Lett.123 033201 [2] Huntemann N, Sanner C, Lipphardt B, Tamm Chr and Peik E 2016 Phys. Rev. Lett.116 063001 [3] McGrew W F, Zhang X, Fasano R J, Schäffer S A, Beloy K, Nicolodi D, Brown R C, Hinkley N, Milani G, Schioppo M, Yoon T H and Ludlow A D 2018 Nature564 87 [4] Nicholson T L, Campbell S L, Hutson R B, Marti G E, Bloom B J, McNally R L, Zhang W, Barrett M D, Safronova M S, Strouse G F, Tew W L and Ye J 2015 Nat. Commun.6 6896 [5] Oelker E, Hutson R B, Kennedy C J, Sonderhouse L, Bothwell T, Goban A, Kedar D, Sanner C, Robinson J M, Marti G E, Matei D G, Legero T, Giunta M, Holzwarth R, Riehle F, Sterr U and Ye J 2019 Nat. Photon.13 714 [6] Riehle F, Gill P, Arias F and Robertsson L 2018 Metrologia55 188 [7] McGrew W F, Zhang X, Leopardi H, Fasano R J, Nicolodi D, Beloy K, Yao J, Sherman J A, Schäfer S A, Savory J, Brown R C, Römisch S, Oates C W, Parker T E, Fortier T M and Ludlow A D 2019 Optica6 448 [8] Lisdat C, Grosche G and Quintin N 2016 Nat. Commun.7 12443 [9] Chou C W, Hume D B, Rosenband T and Wineland D J 2010 Science329 1630 [10] Godun R M, Nisbet-Jones P B R, Jones J M, King S A, Johnson L A M, Margolis H S, Szymaniec K, Lea S N, Bongs K and Gill P 2014 Phys. Rev. Lett.113 210801 [11] Huntemann N, Lipphardt B, Tamm Chr, Gerginov V, Weyers S and Peik E 2014 Phys. Rev. Lett.113 210802 [12] Rosenband T, Hume D B, Schmidt P O, Chou C W, Brusch A, Lorini L, Oskay W H, Drullinger R E, Fortier T M, Stalnaker J E, Diddams S A, Swann W C, Newbury N R, Itano W M, Wineland D J and Bergquist J C 2008 Science319 1808 [13] Delva P, Lodewyck J, Bilicki S, Bookjans E, Rolland A, Baynes F N, Margolis H S and Gill P 2017 Phys. Rev. Lett.118 221102 [14] Arvanitaki A, Huang J and Van Tilburg K 2015 Phys. Rev. D91 015015 [15] Derevianko A and Pospelov M 2014 Nat. Phys.10 933 [16] Dix-Matthews B P, Schediwy S W, Gozzard D R, Savalle E, Esnault F X, Lévéque T, Gravestock C, D'Mello D, Karpathakis S, Tobar M and Wolf P 2021 Nat. Commun.12 515 [17] Kang H J, Yang J, Chun B J, Jang H, Kim B S, Kim Y J and Kim S W 2019 Nat. Commun.10 4438 [18] Shen Q, Guan J Y, Zeng T, Lu Q M, Huang L, Cao Y, Chen J P, Tao T Q, Wu J C, Hou L, Liao S K, Ren J G, Yin J, Jia J J, Jiang H F, Peng C Z, Zhang Q and Pan J W 2021 Optica8 471 [19] Takano T, Takamoto M, Ushijima I, Ohmae N, Akatsuka T, Yamaguchi A, Kuroishi Y, Munekane H, Miyahara B and Katori H 2016 Nat. Photon.10 662 [20] Bothwell T, Kennedy C J, Aeppli A, Kedar D, Robinson J M, Oelker E, Staron A and Ye J 2022 Nature602 420 [21] Mehlstäubler T E, Grosche G, Lisdat C, Schmidt P O and Denker H 2018 Rep. Prog. Phys.81 064401 [22] Grotti J, Koller S, Vogt S, et al. 2018 Nat. Phys.14 437 [23] Takamoto M, Ushijima I, Ohmae N, Yahagi T, Kokado K, Shinkai H and Katori H 2020 Nat. Photon.14 411 [24] Cao J, Zhang P, Shang J, Cui K, Yuan J, Chao S, Wang S, Shu H and Huang X 2017 Appl. Phys. B123 1 [25] Huang Y, Zhang H, Zhang B, Hao Y, Guan H, Zeng M, Chen Q, Lin Y, Wang Y, Cao S, Liang K, Fang F, Fang Z, Li T and Gao K 2020 Phys. Rev. A102 050802 [26] Stuhler J, Abdel Hafiz M, Arar B, Bawamia A, et al. 2021 Meas. Sens.18 100264 [27] Abbasov T, Makarenko K, Sherstov I, Axenov M, Zalivako I, Semerikov I, Borisenko A, Khabarova K, Kolachevsky N, Chepurov S, Taichenachev A, Bagaev S and Tausenev A 2020 arXiv: 2010.15244 [28] Cao J, Yuan J, Wang S, Zhang P, Yuan Y, Liu D, Cui K, Chao S, Shu H, Lin Y, Cao S, Wang Y, Fang Z, Fang F, Li T and Huang X 2022 Appl. Phys. Lett.120 054003 [29] Huang Y, Guan H, Zeng M, Tang L and Gao K 2019 Phys. Rev. A99 011401 [30] Shang J, Cao J, Cui K, Wang S, Zhang P, Yuan J, Chao S, Shu H and Huang X 2017 Opt. Commun.382 410 [31] Hendricks R J, Grant D M, Herskind P F, Dantan A and Drewsen M 2007 Appl. Phys. B88 507 [32] Ibaraki Y, Tanaka U and Urabe S 2011 Appl. Phys. B105 219 [33] Roos C F, Chwalla M, Kim K, Riebe M and Blatt R 2006 Nature443 316 [34] Huang P W, Tang B, Chen X, Zhong J Q, Xiong Z Y, Zhou L, Wang J and Zhan M S 2019 Metrologia56 045012 [35] Smarr L L, Vessot R F C, Lundquist C A, Decher R and Piran T 1983 Gen. Relativ. Gravit.15 129 [36] Ludlow A D, Boyd M M, Ye J, Peik E and Schmidt P O 2015 Rev. Mod. Phys.87 637 [37] Zhang P, Cao J, Yuan J, Liu D, Yuan Y, Wei Y, Shu H and Huang X 2021 Metrologia58 035001 [38] Dubé P, Madej A A, Bernard J E, Marmet L, Boulanger J S and Cundy S 2005 Phys. Rev. Lett.95 033001 [39] Yuan J B, Cao J, Cui K F, Liu D X, Yuan Y, Chao S J, Shu H L and Huang X R 2021 Chin. Phys. B30 070305 [40] Clements E R, Kim M E, Cui K, Hankin A M, Brewer S M, Valencia J, Chen J S, Chou C W, Leibrandt D R and Hume D B 2020 Phys. Rev. Lett.125 243602
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.