Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 020306    DOI: 10.1088/1674-1056/23/2/020306
GENERAL Prev   Next  

Realization of quantum Fourier transform over ZN

Fu Xiang-Qun (付向群), Bao Wan-Su (鲍皖苏), Li Fa-Da (李发达), Zhang Yu-Chao (张宇超)
Information Engineering University, Zhengzhou 450004, China
Abstract  Since the difficulty in preparing the equal superposition state of amplitude is 1/√N, we construct a quantile transform of quantum Fourier transform (QFT) over ZN based on the elementary transforms, such as Hadamard transform and Pauli transform. The QFT over ZN can then be realized by the quantile transform, and used to further design its quantum circuit and analyze the requirements for the quantum register and quantum gates. However, the transform needs considerable quantum computational resources and it is difficult to construct a high-dimensional quantum register. Hence, we investigate the design of t-bit quantile transform, and introduce the definition of t-bit semiclassical QFT over ZN. According to probability amplitude, we prove that the transform can be used to realize QFT over ZN and further design its quantum circuit. For this transform, the requirements for the quantum register, the one-qubit gate, and two-qubit gate reduce obviously when compared with those for the QFT over ZN.
Keywords:  quantum Fourier transform      semiclassical quantum Fourier transform      quantum algorithm  
Received:  21 April 2013      Revised:  04 July 2013      Accepted manuscript online: 
PACS:  03.67.Lx (Quantum computation architectures and implementations)  
  03.65.Sq (Semiclassical theories and applications)  
  03.65.Ta (Foundations of quantum mechanics; measurement theory)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2013CB338002).
Corresponding Authors:  Bao Wan-Su     E-mail:  2010thzz@sina.com
About author:  03.67.Lx; 03.65.Sq; 03.65.Ta; 03.67.-a

Cite this article: 

Fu Xiang-Qun (付向群), Bao Wan-Su (鲍皖苏), Li Fa-Da (李发达), Zhang Yu-Chao (张宇超) Realization of quantum Fourier transform over ZN 2014 Chin. Phys. B 23 020306

[1] Shor P W 1997 SIAM Journal on Computing 26 1484
[2] Grover L K 1996 Proceeding of the 28th ACM Symposium on Theory of Computation, 2002, May 22–24, New York, USA
[3] Zheng S B 2005 Chin. Phys. 14 11
[4] Zhong P C and Bao W S 2008 Chin. Phys. Lett. 25 8
[5] Zhou N R and Zeng G H 2005 Chin. Phys. 14 11
[6] Hallgren S 2002 Proceedings of the 34th Annual ACM Symposium on Theory of Computing, 2002, May 19–21, Montreal, Canada
[7] Proos J and Zalka C 2003 Quantum Information & Computation 3 4
[8] Li J, Peng X, Du J and Suter D 2012 Nature Sci. Rep. 2 260
[9] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (London: Cambridge University Press) Chap. 5, p. 216
[10] Griffiths R B and Niu C S 1996 Phys. Rev. Lett. 76 3228
[11] Chiaverini J, Britton J, Leibfried D, Knill E, Barrett M D, Blakestad R B, Itano W M, Jost J D, Langer C, Ozeri R, Schaetz T and Wineland D J 2005 Science 308 997
[12] Fu X Q, Bao W S, Zhou C and Song Z 2012 Chin. Sci. Bull. 57 1
[1] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[2] Quantum algorithm for neighborhood preserving embedding
Shi-Jie Pan(潘世杰), Lin-Chun Wan(万林春), Hai-Ling Liu(刘海玲), Yu-Sen Wu(吴宇森), Su-Juan Qin(秦素娟), Qiao-Yan Wen(温巧燕), and Fei Gao(高飞). Chin. Phys. B, 2022, 31(6): 060304.
[3] Variational quantum eigensolvers by variance minimization
Dan-Bo Zhang(张旦波), Bin-Lin Chen(陈彬琳), Zhan-Hao Yuan(原展豪), and Tao Yin(殷涛). Chin. Phys. B, 2022, 31(12): 120301.
[4] Selected topics of quantum computing for nuclear physics
Dan-Bo Zhang(张旦波), Hongxi Xing(邢宏喜), Hui Yan(颜辉), Enke Wang(王恩科), and Shi-Liang Zhu(朱诗亮). Chin. Phys. B, 2021, 30(2): 020306.
[5] Realization of t-bit semiclassical quantum Fourier transform on IBM's quantum cloud computer
Xiang-Qun Fu(付向群), Wan-Su Bao(鲍皖苏), He-Liang Huang(黄合良), Tan Li(李坦), Jian-Hong Shi(史建红), Xiang Wang(汪翔), Shuo Zhang(张硕), Feng-Guang Li(李风光). Chin. Phys. B, 2019, 28(2): 020302.
[6] Experimental implementation of a continuous-time quantum random walk on a solid-state quantum information processor
Maimaitiyiming Tusun(麦麦提依明·吐孙), Yang Wu(伍旸), Wenquan Liu(刘文权), Xing Rong(荣星), Jiangfeng Du(杜江峰). Chin. Phys. B, 2019, 28(11): 110302.
[7] Demonstration of quantum permutation parity determine algorithm in a superconducting qutrit
Kunzhe Dai(戴坤哲), Peng Zhao(赵鹏), Mengmeng Li(李蒙蒙), Xinsheng Tan(谭新生), Haifeng Yu(于海峰), Yang Yu(于扬). Chin. Phys. B, 2018, 27(6): 060305.
[8] Coherent attacks on a practical quantum oblivious transfer protocol
Guang-Ping He(何广平). Chin. Phys. B, 2018, 27(10): 100308.
[9] Applications of quantum Fourier transform in photon-added coherent state
Ren Gang (任刚), Du Jian-Ming (杜建明), Yu Hai-Jun (余海军). Chin. Phys. B, 2014, 23(2): 024207.
[10] Application of quantum algorithms to direct measurement of concurrence of a two-qubit pure state
Wang Hong-Fu(王洪福) and Zhang Shou(张寿). Chin. Phys. B, 2009, 18(7): 2642-2648.
[11] A hybrid quantum encoding algorithm of vector quantization for image compression
Pang Chao-Yang (庞朝阳), Zhou Zheng-Wei(周正威), and Guo Guang-Can(郭光灿). Chin. Phys. B, 2006, 15(12): 3039-3043.
No Suggested Reading articles found!