Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(3): 030101    DOI: 10.1088/1674-1056/ac7f91
GENERAL   Next  

Application of the body of revolution finite-element method in a re-entrant cavity for fast and accurate dielectric parameter measurements

Tianqi Feng(冯天琦), Chengyong Yu(余承勇), En Li(李恩), and Yu Shi(石玉)
School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
Abstract  In dielectrometry, traditional analytical and numerical algorithms are difficultly employed in complex resonant cavities. For a special kind of structure (a rotating resonant cavity), the body of revolution finite-element method (BOR-FEM) is employed to calculate the resonant parameters and dielectric parameters. In this paper, several typical resonant structures are selected for analysis and verification. Compared with the resonance parameter values in the literature and the simulation results of commercial software, the error of the BOR-FEM calculation is less than 0.9% and a single solution time is less than 1 s. Reentrant coaxial resonant cavities loaded with dielectric materials are analyzed using this method and compared with simulation results, showing good agreement. Finally, in this paper, the established BOR-FEM method is successfully applied with a machined cavity for the accurate measurement of the complex dielectric constant of dielectric materials. The test specimens were machined from polytetrafluoroethylene, fused silica and Al2O3, and the test results showed good agreement with the literature reference values.
Keywords:  microwave      resonance method      dielectric measurement      coaxial resonant cavity  
Received:  18 February 2022      Revised:  14 June 2022      Accepted manuscript online:  08 July 2022
PACS: (Theory of testing and techniques)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 62001083) and the Guangdong Provincial Key Research and Development Project, China (Grant No. 2020B010179002).
Corresponding Authors:  Chengyong Yu     E-mail:

Cite this article: 

Tianqi Feng(冯天琦), Chengyong Yu(余承勇), En Li(李恩), and Yu Shi(石玉) Application of the body of revolution finite-element method in a re-entrant cavity for fast and accurate dielectric parameter measurements 2023 Chin. Phys. B 32 030101

[1] Holzman E L 2006 IEEE Trans. Microw. Theory 54 3127
[2] Deshpande M D, Reddy C J, Tiemsin P I, et al. 1997 IEEE Trans. Microw. Theory 45 359
[3] Santra M and Limaye K U 2005 IEEE Trans. Microw. Theory 53 718
[4] Baker-Jarvis J, Janezic M D and DeGroot D C 2010 IEEE Instrum. Meas. Mag. 13 24
[5] Kaatze U and Hubner C 2010 Meas. Sci. Technol. 21 082001
[6] Kaatze U 2010 Metrologia 47 S91
[7] Krupka J 2006 Meas. Sci. Technol. 17 R55
[8] Le Floch J M, Fan Y, Humbert G, et al. 2014 Rev. Sci. Instrum. 85 031301
[9] Janezic M D and Baker-Jarvis J 1999 IEEE Trans. Microw. Theory 47 2014
[10] Janezic M D and Grosvenor J H 1991 Conference Record. IEEE Instrumentation and Measurement Technology Conference, May 14-16, 1991, p. 580
[11] Geyer R G, Kabos P and Baker-Jarvis J 2002 IEEE Trans. Instrum. Meas. 51 383
[12] Costa F, Monorchio A, Amabile C, et al. 2011 2011 41st European Microwave Conference, October 10-13, 2011, p. 945
[13] Xiang Y H, Huang J, Fu L L, et al. 2021 IEEE Sens. J. 21 10657
[14] Penaranda-Foix F L, Catala-Civera J M, Canos-Marin A J, et al. 2009 2009 IEEE MTT-S International Microwave Symposium Digest, June 7-12, 2009, p. 1309
[15] Zhou Y, Li E, Guo G F, et al. 2011 Aerospace Materials & Technology 41 60 (in Chinese)
[16] Guo Y F, Zhang Z C and Fu C J 2011 High Power Laser and Particle Beams 23 731
[17] Marques-Villarroya D, Penaranda-Foix F, Garcia-Banos B, et al. 2017 2017 47th European Microwave Conference (EuMC), October 10-12, 2017, p. 440
[18] Fan Y H, Zhang Z Y, Carvalho N C, et al. 2014 IEEE Trans. Microw. Theory 62 1657
[19] Barroso J J, Castro P J, Neto J P L, et al. 2005 SBMO/IEEE MTT-S International Conference on Microwave and Optoelectronics, 2005. July 25, 2005, p. 129
[20] Xi W G and Tinga W R 1992 IEEE Trans. Microw. Theory 40 1927
[21] Wexler A 1967 IEEE Trans. Microw. Theory 15 508
[22] Khodja A, Tounsi M L and Lamhene Y 2002 2002 3rd International Conference on Microwave and Millimeter Wave Technology, 2002. Proceedings. ICMMT 2002. August 17-19, 2002, p. 630
[23] Marques-Villarroya D, Penaranda-Foix F L, Garcia-Banos B, et al. 2017 IEEE Trans. Microw. Theory 65 1191
[24] Penaranda-Foix F L, Janezic M D, Catala-Civera J M, et al. 2012 IEEE Trans. Microw. Theory 60 2730
[25] Lech R and Mazur L 2007 IEEE Trans. Microw. Theory 55 2115
[26] Thompson F, Haigh A D, Dillon B M, et al. 2003 IEE Proc. - Sci. Meas. Technol. 150 113
[27] Kanai Y, Tsukamoto T, Miyakawa M, et al. 2000 IEEE Trans. Magn. 36 1750
[28] Hano M 1984 IEEE Trans. Microw. Theory 32 1275
[29] Zhang C F, Wang W, An S G, et al. 2021 Chin. Phys. B 30 010101
[30] Castiblanco J A, Seetharamdoo D, Berbineau M, et al. 2015 IEEE Trans. Antenn. Propag. 63 1086
[31] Jia P H, Liu Q H, Chen Y P, et al. 2020 IEEE Trans. Antenn. Propag. 68 4753
[32] Dunn E A, Byun J K, Branch E D, et al. 2006 IEEE Trans. Antenn. Propag. 54 945
[33] Zhou Q, Lin S P, Zhang P, et al. 2019 Acta Phys. Sin. 68 147104 (in Chinese)
[34] Zhu Z H, Chen M S, Wu X L, et al. 2014 Computer Technology and Development 24 51 (in Chinese)
[35] Mumcu G, Sertel K and Volakis J L 2008 IEEE Trans. Microw. Theory 56 217
[36] Jin J M 2002 The Finite Element Method in Electromagnetics, 2nd Edition (New York: John Wiley & Sons) p. 193
[37] Greenwood A D and Jin J M 1999 IEEE Trans. Antenn. Propag. 47 620
[38] Graglia R D, Wilton D R and Peterson A F 1997 IEEE Trans. Antenn. Propag. 45 329
[39] Kameari A 1990 IEEE Trans. Magn. 26 466
[40] Webb J P and Forgahani B 1993 IEEE Trans. Magn. 29 1495
[41] Stewart G W 2002 SIAM J. Matrix Analysis Appl. 23 601
[42] Stewart G W 2000 Math Comput. 69 1309
[43] Monsoriu J A, Andres M V, Silvestre E, et al. 2002 IEEE Trans. Microw. Theory 50 2545
[44] Catala-Civera J M, Canós A J, Plaza-González P, et al. 2015 IEEE Trans. Microw. Theory 63 2905
[45] Yu C Y, Tu Y H, Zhang Y P, et al. 2021 IEEE Access 9 14807
[46] Gutiérrez-Cano J D, Plaza-González P, Canós A J, et al. 2020 IEEE Trans. Instrum. Meas. 69 3595
[1] Electromagnetic wave absorption properties of Ba(CoTi)xFe12-2xO19@BiFeO3 in hundreds of megahertz band
Zhi-Biao Xu(徐志彪), Zhao-Hui Qi(齐照辉), Guo-Wu Wang(王国武), Chang Liu(刘畅), Jing-Hao Cui(崔晶浩), Wen-Liang Li(李文梁), and Tao Wang(王涛). Chin. Phys. B, 2022, 31(8): 087504.
[2] Switchable down-, up- and dual-chirped microwave waveform generation with improved time-bandwidth product based on polarization modulation and phase encoding
Yuxiao Guo(郭玉箫), Muguang Wang(王目光), Hongqian Mu(牟宏谦), and Guofang Fan(范国芳). Chin. Phys. B, 2022, 31(7): 078403.
[3] A high rectification efficiency Si0.14Ge0.72Sn0.14–Ge0.82Sn0.18–Ge quantum structure n-MOSFET for 2.45 GHz weak energy microwave wireless energy transmission
Dong Zhang(张栋), Jianjun Song(宋建军), Xiaohuan Xue(薛笑欢), and Shiqi Zhang(张士琦). Chin. Phys. B, 2022, 31(6): 068401.
[4] High-performance coherent population trapping clock based on laser-cooled atoms
Xiaochi Liu(刘小赤), Ning Ru(茹宁), Junyi Duan(段俊毅), Peter Yun(云恩学), Minghao Yao(姚明昊), and Jifeng Qu(屈继峰). Chin. Phys. B, 2022, 31(4): 043201.
[5] Effect of Cu doping on the secondary electron yield of carbon films on Ag-plated aluminum alloy
Tiancun Hu(胡天存), Shukai Zhu(朱淑凯), Yanan Zhao(赵亚楠), Xuan Sun(孙璇), Jing Yang(杨晶), Yun He(何鋆), Xinbo Wang(王新波), Chunjiang Bai(白春江), He Bai(白鹤), Huan Wei(魏焕), Meng Cao(曹猛), Zhongqiang Hu(胡忠强), Ming Liu(刘明), and Wanzhao Cui(崔万照). Chin. Phys. B, 2022, 31(4): 047901.
[6] Switchable instantaneous frequency measurement by optical power monitoring based on DP-QPSK modulator
Yu-Lin Zhu(朱昱琳), Bei-Lei Wu(武蓓蕾), Jing Li(李晶), Mu-Guang Wang(王目光), Shi-Ying Xiao(肖世莹), and Feng-Ping Yan(延凤平). Chin. Phys. B, 2022, 31(4): 044202.
[7] A low-cost invasive microwave ablation antenna with a directional heating pattern
Zhang Wen(文章), Xian-Qi Lin(林先其), Chen-Nan Li(李晨楠), and Yu-Lu Fan(樊钰璐). Chin. Phys. B, 2022, 31(3): 038401.
[8] Origin, characteristics, and suppression of residual nitrogen in MPCVD diamond growth reactor
Yan Teng(滕妍), Dong-Yang Liu(刘东阳), Kun Tang(汤琨), Wei-Kang Zhao(赵伟康), Zi-Ang Chen(陈子昂), Ying-Meng Huang(黄颖蒙), Jing-Jing Duan(段晶晶), Yue Bian(卞岳), Jian-Dong Ye(叶建东), Shun-Ming Zhu(朱顺明), Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2022, 31(12): 128106.
[9] A design of resonant cavity with an improved coupling-adjusting mechanism for the W-band EPR spectrometer
Yu He(贺羽), Runqi Kang(康润琪), Zhifu Shi(石致富), Xing Rong(荣星), and Jiangfeng Du(杜江峰). Chin. Phys. B, 2022, 31(11): 117601.
[10] Significant suppression of residual nitrogen incorporation in diamond film with a novel susceptor geometry employed in MPCVD
Weikang Zhao(赵伟康), Yan Teng(滕妍), Kun Tang(汤琨), Shunming Zhu(朱顺明), Kai Yang(杨凯), Jingjing Duan(段晶晶), Yingmeng Huang(黄颖蒙), Ziang Chen(陈子昂), Jiandong Ye(叶建东), and Shulin Gu(顾书林). Chin. Phys. B, 2022, 31(11): 118102.
[11] Microwave absorption properties regulation and bandwidth formula of oriented Y2Fe17N3-δ@SiO2/PU composite synthesized by reduction-diffusion method
Hao Wang(王浩), Liang Qiao(乔亮), Zu-Ying Zheng(郑祖应), Hong-Bo Hao(郝宏波), Tao Wang(王涛), Zheng Yang(杨正), and Fa-Shen Li(李发伸). Chin. Phys. B, 2022, 31(11): 114206.
[12] Instantaneous frequency measurement using two parallel I/Q modulators based on optical power monitoring
Chuangye Wang(王创业), Tigang Ning(宁提纲), Jing Li(李晶), Li Pei(裴丽), Jingjing Zheng(郑晶晶), and Jingchuan Zhang(张景川). Chin. Phys. B, 2022, 31(1): 010702.
[13] C band microwave damage characteristics of pseudomorphic high electron mobility transistor
Qi-Wei Li(李奇威), Jing Sun(孙静), Fu-Xing Li(李福星), Chang-Chun Chai(柴常春), Jun Ding(丁君), and Jin-Yong Fang(方进勇). Chin. Phys. B, 2021, 30(9): 098502.
[14] Substitution effect on the superconductivity in Mo3-xRexAl2C with β-Mn structure prepared by microwave method
Jun-Nan Sun(孙俊男), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Yin Chen(陈银), Qing-Song Yang(杨清松), Lei Shan(单磊), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2021, 30(7): 077401.
[15] Degenerate cascade fluorescence: Optical spectral-line narrowing via a single microwave cavity
Liang Hu(胡亮), Xiang-Ming Hu(胡响明), and Qing-Ping Hu(胡庆平). Chin. Phys. B, 2021, 30(6): 064211.
No Suggested Reading articles found!