Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 040601    DOI: 10.1088/1674-1056/ac9361
INSTRUMENTATION AND MEASUREMENT Prev   Next  

Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers

Jintao Zheng(郑锦韬)1,2, Yang Zhang(张洋)1,2, Zaiyang Yu(鱼在洋)1,2,3, Zhiqiang Xiong(熊志强)1,2, Hui Luo(罗晖)1,2, and Zhiguo Wang(汪之国)1,2,†
1 College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China;
2 Hunan Key Laboratory of Mechanism and Technology of Quantum Information, National University of Defense Technology, Changsha 410073, China;
3 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710049, China
Abstract  Low-noise high-stability current sources have essential applications such as neutron electric dipole moment measurement and high-stability magnetometers. Previous studies mainly focused on frequency noise above 0.1 Hz while less on the low-frequency noise/drift. We use double resonance alignment magnetometers (DRAMs) to measure and suppress the low-frequency noise of a homemade current source (CS) board. The CS board noise level is suppressed by about 10 times in the range of 0.001-0.1 Hz and is reduced to $100 \mathrm{nA/}\sqrt {\mathrm{Hz}} $ at 0.001 Hz. The relative stability of CS board can reach $2.2\times {10}^{-8}$. In addition, the DRAM shows a better resolution and accuracy than a commercial 7.5-digit multimeter when measuring our homemade CS board. Further, by combining the DRAM with a double resonance orientation magnetometer, we may realize a low-noise CS in the 0.001-1000 Hz range.
Keywords:  precision measurement      current noise suppression      low frequency      double-resonance alignment magnetometer  
Received:  05 July 2022      Revised:  08 September 2022      Accepted manuscript online:  21 September 2022
PACS:  06.20.fb (Standards and calibration)  
  06.30.Ka (Basic electromagnetic quantities)  
  07.55.Jg (Magnetometers for susceptibility, magnetic moment, and magnetization measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174446 and 61671458).
Corresponding Authors:  Zhiguo Wang     E-mail:  maxborn@nudt.edu.cn

Cite this article: 

Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋),Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国) Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers 2023 Chin. Phys. B 32 040601

[1] Kitching J, Donley E A, Knappe S, Hummon M, Dellis A T, Sherman J, Srinivasan K, Aksyuk V A, Li Q, Westly D, Roxworthy B and Lal A 2016 J. Phys.: Conf. Ser. 723 012056
[2] Afach S, Budker D, DeCamp G, et al. 2018 Phys. Dark Universe 22 162
[3] Chupp T E, Fierlinger P, Ramsey-Musolf M J and Singh J T 2019 Rev. Mod. Phys. 91 015001
[4] Wurm D, Beck D H, Chupp T et al. 2019 EPJ Web Conf. 219 02006
[5] Allmendinger F, Heil W, Karpuk S, Kilian W, Scharth A, Schmidt U, Schnabel A, Sobolev Yu and Tullney K 2014 Phys. Rev. Lett. 112 110801
[6] Terrano W A and Romalis M V 2021 Quantum Sci. Technol. 7 014001
[7] Furukawa T, Inoue T, Nanao T, Yoshimi A, Tsuchiya M, Hayashi H, Uchida M and Asahi K 2011 J. Phys.: Conf. Ser. 312 102005
[8] Castagna N, Bison G, Di Domenico G, Hofer A, Knowles P, Macchione C, Saudan H and Weis A 2009 Appl. Phys. B 96 763
[9] Taylor J M, Cappellaro P, Childress L, Jiang L, Budker D, Hemmer P R, Yacoby A, Walsworth R and Lukin M D 2008 Nat. Phys. 4 810
[10] Shen L, Zhang R, Wu T, Peng X, Yu S, Chen J and Guo H 2020 Rev. Sci. Instrum. 91 084701
[11] Rosner M, Beck D, Fierlinger P, Filter H, Klau C, Kuchler F, Rößner P, Sturm M, Wurm D and Sun Z 2022 Appl. Phys. Lett. 120 161102
[12] Chen D Y, Miao P X, Shi Y C, Cui J Z, Liu Z D, Chen J and Wang K 2022 Acta Phys. Sin. 71 024202 (in Chinee)
[13] Rosner M, Beck D, Fierlinger P, Filter H, Klau C, Kuchler F, Rößner P, Sturm M, Wurm D and Sun Z 2022 Appl. Phys. Lett. 120 161102
[14] Ding Y, Zhang R, Zheng J, Chen J, Peng X, Wu T and Guo H 2022 Rev. Sci. Instrum. 93 015003
[15] Weis A, Bison G and Pazgalev A S 2006 Phys. Rev. A 74 033401
[16] Mathur B S, Tang H and Happer W 1968 Phys. Rev. 171 11
[17] Di Domenico G, Bison G, Groeger S, Knowles P, Pazgalev A S, Rebetez M, Saudan H and Weis A 2006 Phys. Rev. A 74 063415
[18] Breschi E, Grujić Z and Weis A 2014 Appl. Phys. B 115 85
[19] Heinzel G, Rüdiger A and Schilling R 2002 http://hdl.handle.net/11858/00-001M-0000-0013-557A-5[2002]
[20] Kornack T W, Smullin S J, Lee S K and Romalis M V 2007 Appl. Phys. Lett. 90 223501
[21] Keshtkar A, Maghoul A and Kalantarnia A 2011 Int. J. Comput. Electr. Eng. 3 507
[22] Altarev I, Bales M, Beck D H, et al. 2015 J. Appl. Phys. 117 183903
[23] Gemmel C, Heil W, Karpuk S, Lenz K, Ludwig Ch, Sobolev Yu, Tullney K, Burghoff M, Kilian W, Knappe-Grüneberg S, Müller W, Schnabel A, Seifert F, Trahms L and Baeßler St 2010 Eur. Phys. J. D 57 303
[24] Zhivun E 2016 Ph.D. Dissertation (Berkeley: University of California, Berkeley)
[25] Fan W, Liu G, Li R, Quan W, Jiang L and Duan L 2017 Meas. Sci. Technol. 28 095007
[26] Stoller S D, Happer W and Dyson F J 1991 Phys. Rev. A 44 7459
[27] Golub R, Rohm R M and Swank C M 2011 Phys. Rev. A 83 023402
[28] Fu Y Y and Yuan J 2017 AIP Adv. 7 115315
[29] Zheng W, Gao H, Liu J G, Zhang Y, Ye Q and Swank C 2011 Phys. Rev. A 84 053411
[30] Yang K, Lu J, Ma Y, Wang Z, Sun B, Wang Y and Han B 2022 IEEE Trans. Instrum. Meas. 71 1501108
[1] New designed helical resonator to improve measurement accuracy of magic radio frequency
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红). Chin. Phys. B, 2022, 31(9): 093201.
[2] Design of a low-frequency miniaturized piezoelectric antenna based on acoustically actuated principle
Yong Zhang(张勇), Zhong-Ming Yan(严仲明), Tian-Hao Han(韩天浩), Shuang-Shuang Zhu(朱双双), Yu Wang(王豫), and Hong-Cheng Zhou(周洪澄). Chin. Phys. B, 2022, 31(7): 077702.
[3] Preparation of a two-state mixture of ultracold fermionic atoms with balanced population subject to the unstable magnetic field
Donghao Li(李东豪), Lianghui Huang(黄良辉), Guoqi Bian(边国旗), Jie Miao(苗杰), Liangchao Chen(陈良超), Zengming Meng(孟增明), Wei Han(韩伟), and Pengjun Wang(王鹏军). Chin. Phys. B, 2021, 30(9): 090303.
[4] Improve the performance of interferometer with ultra-cold atoms
Xiangyu Dong(董翔宇), Shengjie Jin(金圣杰), Hongmian Shui(税鸿冕), Peng Peng(彭鹏), and Xiaoji Zhou(周小计). Chin. Phys. B, 2021, 30(1): 014210.
[5] Precision measurements with cold atoms and trapped ions
Qiuxin Zhang(张球新), Yirong Wang(王艺蓉), Chenhao Zhu(朱晨昊), Yuxin Wang(王玉欣), Xiang Zhang(张翔), Kuiyi Gao(高奎意), Wei Zhang(张威). Chin. Phys. B, 2020, 29(9): 093203.
[6] Movable precision gravimeters based on cold atom interferometry
Jiong-Yang Zhang(张炯阳), Le-Le Chen(陈乐乐), Yuan Cheng(程源), Qin Luo(罗覃), Yu-Biao Shu(舒玉彪), Xiao-Chun Duan(段小春), Min-Kang Zhou(周敏康), Zhong-Kun Hu(胡忠坤). Chin. Phys. B, 2020, 29(9): 093702.
[7] Nonlinear continuous bi-inductance electrical line with dissipative elements: Dynamics of the low frequency modulated waves
S M Ngounou, F B Pelap. Chin. Phys. B, 2020, 29(4): 040502.
[8] Negative gate bias stress effects on conduction and low frequency noise characteristics in p-type poly-Si thin-film transistors
Chao-Yang Han(韩朝阳), Yuan Liu(刘远), Yu-Rong Liu(刘玉荣), Ya-Yi Chen(陈雅怡), Li Wang(王黎), Rong-Sheng Chen(陈荣盛). Chin. Phys. B, 2019, 28(8): 088502.
[9] Degradation of current-voltage and low frequency noise characteristics under negative bias illumination stress in InZnO thin film transistors
Li Wang(王黎), Yuan Liu(刘远), Kui-Wei Geng(耿魁伟), Ya-Yi Chen(陈雅怡), Yun-Fei En(恩云飞). Chin. Phys. B, 2018, 27(6): 068504.
[10] Generation of squeezed vacuum on cesium D2 line down to kilohertz range
Jian-Feng Tian(田剑锋), Guan-Hua Zuo(左冠华), Yu-Chi Zhang(张玉驰), Gang Li(李刚), Peng-Fei Zhang(张鹏飞), Tian-Cai Zhang(张天才). Chin. Phys. B, 2017, 26(12): 124206.
[11] Low frequency noise and radiation response in the partially depleted SOI MOSFETs with ion implanted buried oxide
Liu Yuan (刘远), Chen Hai-Bo (陈海波), Liu Yu-Rong (刘玉荣), Wang Xin (王信), En Yun-Fei (恩云飞), Li Bin (李斌), Lu Yu-Dong (陆裕东). Chin. Phys. B, 2015, 24(8): 088503.
[12] Precision measurement with atom interferometry
Wang Jin (王谨). Chin. Phys. B, 2015, 24(5): 053702.
[13] Micro-Gal level gravity measurements with cold atom interferometry
Zhou Min-Kang (周敏康), Duan Xiao-Chun (段小春), Chen Le-Le (陈乐乐), Luo Qin (罗覃), Xu Yao-Yao (徐耀耀), Hu Zhong-Kun (胡忠坤). Chin. Phys. B, 2015, 24(5): 050401.
[14] Investigation on the intensity noise characteristics of the semiconductor ring laser
Kang Ze-Xin (康泽新), Cai Xin-Lun (蔡鑫伦), Wen Xiao-Dong (温晓东), Liu Chao (刘超), Jian Shui-Sheng (简水生), Yu Si-Yuan (余思远). Chin. Phys. B, 2014, 23(2): 024203.
[15] Effects of an applied low frequency field on the dynamics of a two-level atom interacting with a single-mode field
Xu Xun-Wei(徐勋卫) and Liu Nian-Hua(刘念华). Chin. Phys. B, 2010, 19(1): 014210.
No Suggested Reading articles found!