Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(4): 044210    DOI: 10.1088/1674-1056/ac7bfc
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Effective dynamics and quantum state engineering by periodic kicks

Zhi-Cheng Shi(施志成)1,2, Zhen Chen(陈阵)1,2, Jian-Hui Wang(王建辉)1,2, Yan Xia(夏岩)1,2,†, and X X Yi(衣学喜)3,‡
1 Fujian Key Laboratory of Quantum Information and Quantum Optics(Fuzhou University), Fuzhou 350108, China;
2 Department of Physics, Fuzhou University, Fuzhou 350108, China;
3 Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024, China
Abstract  We study the kick dynamics of periodically driven quantum systems, and provide a time-independent effective Hamiltonian with the analytical form to reasonably describe the effective dynamics in a long timescale. It is shown that the effective coupling strength can be much larger than the coupling strength of the original system in some parameter regions, which stems from the zero time duration of kicks. Furthermore, different regimes can be transformed from and to each other in the same three-level system by only modulating the period of periodic kicks. In particular, the population of excited states can be selectively suppressed in periodic kicks, benefiting from the large detuning regime of the original system. Finally, some applications and physical implementation of periodic kicks are demonstrated in quantum systems. These unique features would make periodic kicks become a powerful tool for quantum state engineering.
Keywords:  periodic driving      δ function      quantum state engineering  
Received:  28 April 2022      Revised:  20 June 2022      Accepted manuscript online:  27 June 2022
PACS:  42.50.-p (Quantum optics)  
  42.50.Dv (Quantum state engineering and measurements)  
  02.30.Yy (Control theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11805036, 12175033, and 12147206), the Natural Science Foundation of Fujian Province, China (Grant No. 2021J01575), the Natural Science Funds for Distinguished Young Scholar of Fujian Province, China (Grant No. 2020J06011), and the Project from Fuzhou University (Grant No. JG202001-2).
Corresponding Authors:  Yan Xia, X X Yi     E-mail:  xia-208@163.com;yixx@nenu.edu.cn

Cite this article: 

Zhi-Cheng Shi(施志成), Zhen Chen(陈阵), Jian-Hui Wang(王建辉), Yan Xia(夏岩), and X X Yi(衣学喜) Effective dynamics and quantum state engineering by periodic kicks 2023 Chin. Phys. B 32 044210

[1] Shirley J H 1965 Phys. Rev. 138 B979
[2] Sambe H 1973 Phys. Rev. A 7 2203
[3] Grossmann F, Dittrich T, Jung P and Hänggi P 1991 Phys. Rev. Lett. 67 516
[4] Grifoni M and Hänggi P 1998 Phys. Rep. 304 229
[5] Sacha K 2015 Phys. Rev. A 91 033617
[6] Khemani V, Lazarides A, Moessner R and Sondhi S L 2016 Phys. Rev. Lett. 116 250401
[7] Else D V, Bauer B and Nayak C 2016 Phys. Rev. Lett. 117 090402
[8] Wilczek F 2012 Phys. Rev. Lett. 109 160401
[9] Sacha K and Zakrzewski J 2017 Rep. Prog. Phys. 81 016401
[10] Horstmann B, Cirac J I and Roscilde T 2007 Phys. Rev. A 76 043625
[11] Hegde S S, Katiyar H, Mahesh T S and Das A 2014 Phys. Rev. B 90 174407
[12] Nag T, Sen D and Dutta A 2015 Phys. Rev. A 91 063607
[13] Bukov M, D'Alessio L and Polkovnikov A 2015 Adv. Phys. 64 139
[14] Luitz D J, Lazarides A and Bar Lev Y 2018 Phys. Rev. B 97 020303
[15] Dai C M, Wang W and Yi X X 2018 Phys. Rev. A 98 013635
[16] Choi S, Abanin D A and Lukin M D 2018 Phys. Rev. B 97 100301
[17] Eckardt A, Weiss C and Holthaus M 2005 Phys. Rev. Lett. 95 260404
[18] Sordi G, Amaricci A and Rozenberg M J 2007 Phys. Rev. Lett. 99 196403
[19] Fu B, Zheng H, Li Q, Shi Q and Yang J 2014 Phys. Rev. B 90 214502
[20] Eckardt A 2017 Rev. Mod. Phys. 89 011004
[21] Nie W, Antezza M, Liu Y and Nori F 2021 Phys. Rev. Lett. 127 250402
[22] Bhargava B A, Das S K and Fulga I C 2022 Phys. Rev. B 105 054205
[23] Gagnon D, Fillion-Gourdeau F, Dumont J, Lefebvre C and MacLean S 2017 Phys. Rev. Lett. 119 053203
[24] Zenesini A, Lignier H, Ciampini D, Morsch O and Arimondo E 2009 Phys. Rev. Lett. 102 100403
[25] Creffield C E and Platero G 2010 Phys. Rev. Lett. 105 086804
[26] Strauch F W 2012 Phys. Rev. Lett. 109 210501
[27] Navarrete-Benlloch C, García-Ripoll J J and Porras D 2014 Phys. Rev. Lett. 113 193601
[28] Chen C, An J H, Luo H G, Sun C P and Oh C H 2015 Phys. Rev. A 91 052122
[29] Aharon N, Schwartz I and Retzker A 2019 Phys. Rev. Lett. 122 120403
[30] Creffield C E 2007 Phys. Rev. Lett. 99 110501
[31] Li J, Chalapat K and Paraoanu G S 2008 Phys. Rev. B 78 064503
[32] Li J and Paraoanu G S 2009 New J. Phys. 11 113020
[33] Shi Z C, Ran D, Shen L T, Xia Y and Yi X X 2018 Opt. Express 26 34789
[34] Shi Z C, Chen Y H, Qin W, Xia Y, Yi X X, Zheng S B and Nori F 2021 Phys. Rev. A 104 053101
[35] Paraoanu G S 2006 Phys. Rev. B 74 140504
[36] Song Y, Kestner J P, Wang X and Das Sarma S 2016 Phys. Rev. A 94 012321
[37] Yang Y C, Coppersmith S N and Friesen M 2019 Phys. Rev. A 100 022337
[38] Shi Z C, Zhang C, Shen L T, Xia Y, Yi X X and Zheng S B 2020 Phys. Rev. A 101 042314
[39] Wu J L, Wang Y, Han J X, Su S L, Xia Y, Jiang Y and Song J 2021 Phys. Rev. A 103 012601
[40] Morinaga M, Bouchoule I, Karam J C and Salomon C 1999 Phys. Rev. Lett. 83 4037
[41] Persson E, Yoshida S, Tong X M, Reinhold C O and Burgdörfer J 2003 Phys. Rev. A 68 063406
[42] Carvalho A R R and Buchleitner A 2004 Phys. Rev. Lett. 93 204101
[43] Ryu C, Andersen M F, Vaziri A, D'Arcy M B, Grossman J M, Helmerson K and Phillips W D 2006 Phys. Rev. Lett. 96 160403
[44] Talukdar I, Shrestha R and Summy G S 2010 Phys. Rev. Lett. 105 054103
[45] Wang X Q, Ma J, Zhang X H and Wang X G 2011 Chin. Phys. B 20 050510
[46] Bandyopadhyay J N and Guha Sarkar T 2015 Phys. Rev. E 91 032923
[47] Yu W C, Tangpanitanon J, Glaetzle A W, Jaksch D and Angelakis D G 2019 Phys. Rev. A 99 033618
[48] Wang Y, Gao Y and Tong P 2018 Chin. Phys. B 27 120503
[49] Yu H, Ren Z and Zhang X 2019 Chin. Phys. B 28 020504
[50] Fava M, Fazio R and Russomanno A 2020 Phys. Rev. B 101 064302
[51] Kovachy T, Hogan J M, Sugarbaker A, Dickerson S M, Donnelly C A, Overstreet C and Kasevich M A 2015 Phys. Rev. Lett. 114 143004
[52] Müntinga H, Ahlers H, Krutzik M, et al. 2013 Phys. Rev. Lett. 110 093602
[53] Corgier R, Loriani S, Ahlers H, Posso-Trujillo K, Schubert C, Rasel E M, Charron E and Gaaloul N 2020 New J. Phys. 22 123008
[54] Dupays L, Spierings D C, Steinberg A M and del Campo A 2021 Phys. Rev. Res. 3 033261
[55] Deppner C, Herr W, Cornelius M, Stromberger P, Sternke T, Grzeschik C, Grote A, Rudolph J, Herrmann S, Krutzik M, Wenzlawski A, Corgier R, Charron E, Guéry-Odelin D, Gaaloul N, Lämmerzahl C, Peters A, Windpassinger P and Rasel E M 2021 Phys. Rev. Lett. 127 100401
[56] Corgier R, Gaaloul N, Smerzi A and Pezzé L 2021 Phys. Rev. Lett. 127 183401
[57] Agarwala A and Sen D 2017 Phys. Rev. B 95 014305
[58] Agarwala A and Sen D 2017 Phys. Rev. B 96 104309
[59] Muñoz-Arias M H, Poggi P M and Deutsch I H 2021 Phys. Rev. E 103 052212
[60] Muñoz Arias M H, Chinni K and Poggi P M 2022 Phys. Rev. Research 4 023018
[61] Ghosh S and Liew T C H 2019 Phys. Rev. Lett. 123 013602
[62] Bason M G, Viteau M, Malossi N, Huillery P, Arimondo E, Ciampini D, Fazio R, Giovannetti V, Mannella R and Morsch O 2011 Nat. Phys. 8 147
[63] Gagnon D, Fillion-Gourdeau F, Dumont J, Lefebvre C and MacLean S 2016 Phys. Rev. B 93 205415
[64] Fillion-Gourdeau F, Gagnon D, Lefebvre C and MacLean S 2016 Phys. Rev. B 94 125423
[65] Gagnon D, Fillion-Gourdeau F, Dumont J, Lefebvre C and MacLean S 2016 J. Phys.-Condens. Matter 29 035501
[66] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge: Cambridge University Press)
[67] Chu S I and Telnov D A 2004 Phys. Rep. 390 1
[68] Son S K, Han S and Chu S I 2009 Phys. Rev. A 79 032301
[69] Pan J, Jooya H Z, Sun G, Fan Y, Wu P, Telnov D A, Chu S I and Han S 2017 Phys. Rev. B 96 174518
[70] Zhao S K, Ge Z Y, Xiang Z C, Xue G M, Yan H S, Wang Z T, Wang Z, Xu H K, Su F F, Yang Z H, Zhang H, Zhang Y R, Guo X Y, Xu K, Tian Y, Yu H F, Zheng D N, Fan H and Zhao S P 2022 Chin. Phys. B 31 030307
[71] Shevchenko S N, Ashhab S and Nori F 2010 Phys. Rep. 492 1
[72] Eckardt A and Anisimovas E 2015 New J. Phys. 17 093039
[73] Silveri M P, Kumar K S, Tuorila J, Li J, Vepsäläinen A, Thuneberg E V and Paraoanu G S 2015 New J. Phys. 17 043058
[74] Zhao D, Jiang C W and Li F L 2015 Chin. Phys. B 24 074205
[75] Kenmoe M B and Fai L C 2016 Phys. Rev. B 94 125101
[76] Rodionov Y I, Kugel K I and Nori F 2016 Phys. Rev. B 94 195108
[77] Qu J X, Duan S Q and Yang N 2017 Chin. Phys. B 26 127308
[78] Wang B, Ünal F N and Eckardt A 2018 Phys. Rev. Lett. 120 243602
[79] Liu H, Xiong T S, Zhang W and An J H 2019 Phys. Rev. A 100 023622
[80] Casanova J, Torrontegui E, Plenio M B, García-Ripoll J J and Solano E 2019 Phys. Rev. Lett. 122 010407
[81] Yang W L, Song W L, An J H, Feng M, Suter D and Du J 2019 New J. Phys. 21 013007
[82] Zhao Y Y, Zhao D, Jiang C W, Fang A P, Gao S Y and Li F L 2020 Chin. Phys. B 29 023201
[83] Han Y, Luo X Q, Li T F and Zhang W 2020 Phys. Rev. A 101 022108
[84] Rahav S, Gilary I and Fishman S 2003 Phys. Rev. A 68 013820
[85] Goldman N and Dalibard J 2014 Phys. Rev. X 4 031027
[86] Wang Y F, Yin H H, Yang M Y, Ji A C and Sun Q 2021 Chin. Phys. B 30 064204
[87] Ashhab S, Johansson J R, Zagoskin A M and Nori F 2007 Phys. Rev. A 75 063414
[88] Silveri M P, Tuorila J A, Thuneberg E V and Paraoanu G S 2017 Rep. Prog. Phys. 80 056002
[89] Lambert N, Cirio M, Delbecq M, Allison G, Marx M, Tarucha S and Nori F 2018 Phys. Rev. B 97 125429
[90] Shevchenko S N, Ryzhov A I and Nori F 2018 Phys. Rev. B 98 195434
[91] Basak S, Chougale Y and Nath R 2018 Phys. Rev. Lett. 120 123204
[92] Eastham M S P 1973 The Spectral Theory of Periodic Differential Equations (Scottish Academic)
[93] Xiang Z L, Ashhab S, You J Q and Nori F 2013 Rev. Mod. Phys. 85 623
[94] Leibfried D, Blatt R, Monroe C and Wineland D 2003 Rev. Mod. Phys. 75 281
[95] Barredo D, Labuhn H, Ravets S, Lahaye T, Browaeys A and Adams C S 2015 Phys. Rev. Lett. 114 113002
[96] Chen B and Li Y 2016 Sci. China-Phys. Mech. Astron. 59 640302
[97] Li D X and Shao X Q 2018 Phys. Rev. A 98 062338
[98] Shi Z C, Zhang C, Ran D, Xia Y, Ianconescu R, Friedman A, Yi X X and Zheng S B 2022 New J. Phys. 24 023014
[99] Li R, Yu D, Su S L and Qian J 2020 Phys. Rev. A 101 042328
[1] Floquet scattering through a parity-time symmetric oscillating potential
Xuzhen Cao(曹序桢), Zhaoxin Liang(梁兆新), and Ying Hu(胡颖). Chin. Phys. B, 2023, 32(3): 030302.
[2] Quantum properties of nonclassical states generated by an optomechanical system with catalytic quantum scissors
Heng-Mei Li(李恒梅), Bao-Hua Yang(杨保华), Hong-Chun Yuan(袁洪春), and Ye-Jun Xu(许业军). Chin. Phys. B, 2023, 32(1): 014202.
[3] Ultrafast population transfer in a Λ-configuration level system driven by few-cycle laser pulses
Zhang Wen-Jing (张文静), Xie Xiao-Tao (谢小涛), Jin Lu-Ling (金璐玲), Bai Jin-Tao (白晋涛). Chin. Phys. B, 2013, 22(11): 114210.
[4] Quantum communication via controlled holes in the statistical distribution of excitations in a nanoresonator coupled to a Cooper pair box
C. Valverde, A.T. Avelar, and B. Baseia . Chin. Phys. B, 2012, 21(3): 030308.
[5] Preparation of multicomponent motional coherent and squeezed coherent states of a trapped ion
Li Jia-Hua (李家华), Yang Wen-Xing (杨文星), Peng Ju-Cun (彭菊村). Chin. Phys. B, 2004, 13(10): 1700-1706.
No Suggested Reading articles found!