CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Multiple sign reversals of the exchange bias field in polycrystalline SmCr0.9Fe0.1O3 |
Fang Yong (房勇), Yan Shi-Ming (颜士明), Gong Yuan-Yuan (龚元元), Zhu Wei-Li (朱卫利), Cao Qing-Qi (曹庆琪), Wang Dun-Hui (王敦辉), Du You-Wei (都有为) |
Jiangsu Key Laboratory for Nano Technology and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China |
|
|
Abstract We synthesize the perovskite compound SmCr0.9Fe0.1O3 by the sol–gel method and investigate its exchange bias properties through thermomagnetic and isothermal magnetization measurements. The sign reversals of the exchange bias field are observed at the magnetization compensation temperatures 29.6 K and 96.2 K. It is demonstrated that the occurrence of the exchange bias originates from the antiferromagnetic coupling between the Cr-rich and Fe–Cr regions, of which the net magnetization is temperature-dependent. These results imply that there are potential applications in single systems with sign reversals of both magnetization and exchange bias.
|
Received: 20 May 2014
Revised: 04 August 2014
Accepted manuscript online:
|
PACS:
|
75.50.Gg
|
(Ferrimagnetics)
|
|
75.50.Ee
|
(Antiferromagnetics)
|
|
75.30.Et
|
(Exchange and superexchange interactions)
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2014AA032904 and 2009CB929501) and the National Natural Science Foundation of China (Grant Nos. 11174130 and U1232210). |
Corresponding Authors:
Cao Qing-Qi
E-mail: qqcao@nju.edu.cn
|
Cite this article:
Fang Yong (房勇), Yan Shi-Ming (颜士明), Gong Yuan-Yuan (龚元元), Zhu Wei-Li (朱卫利), Cao Qing-Qi (曹庆琪), Wang Dun-Hui (王敦辉), Du You-Wei (都有为) Multiple sign reversals of the exchange bias field in polycrystalline SmCr0.9Fe0.1O3 2014 Chin. Phys. B 23 127502
|
|
| [1] | Nogués J and Schuller I K 1999 J. Magn. Magn. Mater. 192 203
|
|
| [2] | Nogués J, Sort J, Langlais V, Skumryev V, Suriñach S, Muñoz J S and Bar M D 2005 Phys. Rep. 422 65
|
|
| [3] | Prejbeanu I L, Kerekes M, Sousa R C, Sibuet H, Redon O, Dieny B and Nozi'eres J P 2007 J. Phys.: Condens. Matter 19 165218
|
|
| [4] | Tsang C, Fontana R E, Lin T, Heim D, Speriosu V S, Gurney B A and Williams M L 1994 IEEE Trans. Magn. 30 3801
|
|
| [5] | Giri S, Patra M and Majumdar S 2011 J. Phys.: Condens. Matter 23 073201
|
|
| [6] | Meiklejohn W H and Bean C P 1957 Phys. Rev. 105 904
|
|
| [7] | Kiwi M 2001 J. Magn. Magn. Mater. 234 584
|
|
| [8] | Stamps R L 2000 J. Phys. D: Appl. Phys. 33 R247
|
|
| [9] | Bobo J F, Gabillet L and Bibes M 2004 J. Phys.: Condens. Matter 16 S471
|
|
| [10] | Shi Z, Du J and Zhou S M 2014 Chin. Phys. B 23 027503
|
|
| [11] | Ali M, Adie P, Marrow C H, Greig D, Hickey B J and Stamps R L 2007 Nat. Mater. 6 70
|
|
| [12] | Nogués J, Lederman D, Moran T J and Schuller I K 1996 Phys. Rev. Lett. 76 4624
|
|
| [13] | Demirtas S and Koymen A R 2004 J. Appl. Phys. 95 4949
|
|
| [14] | Yoshii K J 2011 Appl. Phys. Lett. 99 142501
|
|
| [15] | Manna P K, Yusuf S M, Shukla R and Tyagi A K 2010 Appl. Phys. Lett. 96 242508
|
|
| [16] | Padam R, Pandya S, Ravi S, Nigam A K, Ramakrishnan S, Grover A K and Pal D 2013 Appl. Phys. Lett. 102 112412
|
|
| [17] | Hong F, Cheng Z X, Wang J L, Wang X L and Dou S X 2012 Appl. Phys. Lett. 101 102411
|
|
| [18] | Papusoi C, Sousa R C, Dieny B, Prejbeanu I L, Conraux Y, Mackay K and Nozi'eres J P 2008 J. Appl. Phys. 104 013915
|
|
| [19] | Rajeswaran B, Khomskii D I, Zvezdin A K, Rao C N R and Sundaresan A 2012 Phys. Rev. B 86 214409
|
|
| [20] | Yamaguchi T 1974 J. Phys. Chem. Solids 35 479
|
|
| [21] | Yin L H, Liu Y, Tan S G, Zhao B C, Dai J M, Song W H and Sun Y P 2013 Mater. Res. Bull. 48 4016
|
|
| [22] | Demirtas S and Koymen A R 2004 J. Appl. Phys. 95 4949
|
|
| [23] | Sarkar B, Dalal B and De S K 2013 Appl. Phys. Lett. 103 252403
|
|
| [24] | Kulkarni P D, Thamizhavel A, Rakhecha V C, Nigam A K, Paulose P L, Ramakrishanan S and Grover A K 2009 Europhys. Lett. 86 47003
|
|
| [25] | Chakraverty S, Ohtomo A, Okuyama D, Saito M, Okude M, Kumai R, Arima T, Tokura Y, Tsukimoto S, Ikuhara Y and Kawasaki M 2011 Phys. Rev. B 84 064436
|
|
| [26] | Baettig P, Spaldin N A 2005 Appl. Phys. Lett. 86 012505
|
|
| [27] | Panagiotopoulos I, Christides C, Pissas M and Niarchos D 1999 Phys. Rev. B 60 485
|
|
| [28] | Huang X H, Ding J F, Zhang G Q, Hou Y, Yao Y P and Li X G 2008 Phys. Rev. B 78 224408
|
|
| [29] | Singh R P, Tomy C V and Grover A K 2010 Appl. Phys. Lett. 97 182505
|
|
| [30] | Hong F, Cheng Z X, Wang J L, Wang X L and Dou S X 2012 Appl. Phys. Lett. 101 102411
|
|
| [31] | Belik A A 2013 Inorg. Chem. 52 2015
|
|
| [32] | Venkatesh S, Vaidya U, Rakhecha V C, Ramakrishnan S and Grover A K 2010 J. Phys.: Condens. Matter 22 496002
|
|
| [33] | Fita I, Markovich V, Wisniewski A, Puzniak R, Martin C, Varyukhin V N and Gorodetsky G 2013 Phys. Rev. B 88 064424
|
|
| [34] | Binek Ch, Chen X, Hochstrat A and Kleemann W 2002 J. Magn. Magn. Mater. 240 257
|
|
| [35] | Zhang K, Zhao T and Fujiwara M 2001 J. Appl. Phys. 89 6910
|
|
| [36] | Bora T and Ravi S 2013 J. Appl. Phys. 114 183902
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|