CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Defect characterization and magnetic properties in un-doped ZnO thin film annealed in a strong magnetic field |
Ning Shuai (宁帅), Zhan Peng (战鹏), Wang Wei-Peng (王炜鹏), Li Zheng-Cao (李正操), Zhang Zheng-Jun (张政军) |
State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China |
|
|
Abstract Highly c-axis oriented un-doped zinc oxide (ZnO) thin films, each with a thickness of ~ 100 nm, are deposited on Si (001) substrates by pulsed electron beam deposition at a temperature of ~ 320 ℃, followed by annealing at 650 ℃ in argon in a strong magnetic field. X-ray photoelectron spectroscopy (XPS), positron annihilation analysis (PAS), and electron paramagnetic resonance (EPR) characterizations suggest that the major defects generated in these ZnO films are oxygen vacancies. Photoluminescence (PL) and magnetic property measurements indicate that the room-temperature ferromagnetism in the un-doped ZnO film originates from the singly ionized oxygen vacancies whose number depends on the strength of the magnetic field applied in the thermal annealing process. The effects of the magnetic field on the defect generation in the ZnO films are also discussed.
|
Received: 06 June 2014
Revised: 25 July 2014
Accepted manuscript online:
|
PACS:
|
75.50.Pp
|
(Magnetic semiconductors)
|
|
75.60.Nt
|
(Magnetic annealing and temperature-hysteresis effects)
|
|
61.72.jd
|
(Vacancies)
|
|
78.55.Et
|
(II-VI semiconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51372135), the Research Project of the Chinese Ministry of Education (Grant No. 113007A), and the Tsinghua University Initiative Scientific Research Program. |
Corresponding Authors:
Zhang Zheng-Jun
E-mail: zjzhang@tsinghua.edu.cn
|
Cite this article:
Ning Shuai (宁帅), Zhan Peng (战鹏), Wang Wei-Peng (王炜鹏), Li Zheng-Cao (李正操), Zhang Zheng-Jun (张政军) Defect characterization and magnetic properties in un-doped ZnO thin film annealed in a strong magnetic field 2014 Chin. Phys. B 23 127503
|
|
| [1] | Vayssieres L 2003 Adv. Mater. 15 464
|
|
| [2] | Ozgur U, Alivov Y I, Liu C, Teke A, Reshchikov M A, Dogan S, Avrutin V, Cho S J and Morkoc H 2005 J. Appl. Phys. 98 041301
|
|
| [3] | Dietl T, Ohno H, Matsukura F, Cibert J and Ferrand D 2000 Science 287 1019
|
|
| [4] | Venkatesh P S, Purushothaman V, Muthu S E, Arumugam S, Ramakrishnan V, Jeganathan K and Ramamurthi K 2012 CrystEngComm 14 4713
|
|
| [5] | Qin G P, Wang X Q, Zheng J, Kong C Y, Ruan H B, Li W J, Zhao Y H and Meng X D 2013 Chin. Phys. B 22 057101
|
|
| [6] | Kittilstved K R, Liu W K and Gamelin D R 2006 Nat. Mater. 5 291
|
|
| [7] | Herng T S, Qi D C, Berlijn T, Yi J B, Yang K S, Dai Y, Feng Y P, Santoso I, Sánchez-Hanke C, Gao X Y, Wee A T S, Ku W, Ding J and Rusydi A 2010 Phys. Rev. Lett. 105 207201
|
|
| [8] | Roberts B K, Pakhomov A B, Shutthanandan V S and Krishnan K M 2005 J. Appl. Phys. 97 10D310
|
|
| [9] | Xi S B, Cui M Q, Qin X F, Xu X H, Xu W, Zheng L, Zhou J, Liu L J, Yang D L and Guo Z Y 2012 Chin. Phys. Lett. 29 127804
|
|
| [10] | Kundaliya D C, Ogale S B, Lofland S E, Dhar S, Metting C J, Shinde S R, Ma Z, Varughese B, Ramanujachary K V, Salamanca-Riba L and Venkatesan T 2004 Nat. Mater. 3 709
|
|
| [11] | Xu Q Y, Schmidt H, Zhou S Q, Potzger K, Helm M, Hochmuth H, Lorenz M, Setzer A, Esquinazi P, Meinecke C and Grundmann M 2008 Appl. Phys. Lett. 92 082508
|
|
| [12] | Chen Z Y, Chen Z Q, Pan R K and Wang S J 2013 Chin. Phys. Lett. 30 027804
|
|
| [13] | Hong N H, Sakai J, Poirot N and Brize V 2006 Phys. Rev. B 73 132404
|
|
| [14] | Coey J, Venkatesan M, Stamenov P, Fitzgerald C B and Dorneles L S 2005 Phys. Rev. B 72 02445
|
|
| [15] | Ning S, Zhan P, Xie Q, Li Z C and Zhang Z J 2013 J. Phys. D: Appl. Phys. 46 445004
|
|
| [16] | Yang G J, Gao D Q, Zhang J L, Zhang J, Shi Z H and Xue D S 2011 J. Phys. Chem. C 115 16814
|
|
| [17] | Xu X Y, Xu C X, Dai J, Hu J G, Li F J and Zhang S 2012 J. Phys. Chem. C 116 8813
|
|
| [18] | Xing G, Wang D, Yi J, Yang L, Gao M, He M, Yang J, Ding J, Sum T C and Wu T 2010 Appl. Phys. Lett. 96 112511
|
|
| [19] | Zhan P, Wang W P, Xie Z, Li Z C, Zhang Z J, Zhang P, Wang B Y and Cao X Z 2012 Appl. Phys. Lett. 101 031913
|
|
| [20] | Zhan P, Wang W P, Liu C, Hu Y, Li Z C, Zhang Z J, Zhang P, Wang B Y and Cao X Z 2012 J. Appl. Phys. 111 033501
|
|
| [21] | You H, Yang J, Zhu J K, Xu W F and Tang X D 2012 Appl. Surf. Sci. 258 4455
|
|
| [22] | Peng C X, Liang Y, Wang K F, Zhang Y, Zhao G F and Wang Y X 2012 J. Phys. Chem. C 116 9709
|
|
| [23] | Yan W S, Sun Z H, Liu Q H, Li Z R, Pan Z Y, Wang J, Wei S Q, Wang D, Zhou Y X and Zhang X Y 2007 Appl. Phys. Lett. 91 062113
|
|
| [24] | Shi T F, Xiao Z G, Yin Z J, Li X H, Wang Y Q, He H T, Wang J N, Yan W S and Wei S Q 2010 Appl. Phys. Lett. 96 211905
|
|
| [25] | Ullakko K, Huang J K, Kantner C, OHandley R C and Kokorin V V 1996 Appl. Phys. Lett. 69 1966
|
|
| [26] | Hu Y, Li Z, Zhang Z and Meng D 2009 Appl. Phys. Lett. 94 103107
|
|
| [27] | Abraham D W, Frank M M and Guha S 2005 Appl. Phys. Lett. 87 252502
|
|
| [28] | Major S, Kumar S, Bhatnagar M and Chopra K L 1986 Appl. Phys. Lett. 49 394
|
|
| [29] | Hsieh P T, Chen Y C, Kao K S and Wang C M 2008 Appl. Phys. A: Mater. 90 317
|
|
| [30] | Aljawfi R N and Mollah S 2011 J. Magn. Magn. Mater. 323 3126
|
|
| [31] | Khalid M, Ziese M, Setzer A, Esquinazi P, Lorenz M, Hochmuth H, Grundmann M, Spemann D, Butz T, Brauer G, Anwand W, Fischer G, Adeagbo W A, Hergert W and Ernst A 2009 Phys. Rev. B 80 035331
|
|
| [32] | Selim F A, Weber M H, Solodovnikov D and Lynn K G 2007 Phys. Rev. Lett. 99 85502
|
|
| [33] | Chen Z Q, Wang S J, Maekawa M, Kawasuso A, Naramoto H, Yuan X L and Sekiguchi T 2007 Phys. Rev. B 75 245206
|
|
| [34] | van Dijken A, Meulenkamp E A, Vanmaekelbergh D and Meijerink A 2000 J. Phys. Chem. B 104 1715
|
|
| [35] | Djurisic A B, Choy W, Roy V, Leung Y H, Kwong C Y, Cheah K W, Rao T, Chan W K, Lui H T and Surya C 2004 Adv. Funct. Mater. 14 856
|
|
| [36] | Shi W S, Agyeman O and Xu C N 2002 J. Appl. Phys. 91 5640
|
|
| [37] | Vanheusden K, Warren W L, Seager C H, Tallant D R, Voigt J A and Gnade B E 1996 J. Appl. Phys. 79 7983
|
|
| [38] | Heo Y W, Norton D P and Pearton S J 2005 J. Appl. Phys. 98 075302
|
|
| [39] | Zeng H B, Duan G T, Li Y, Yang S K, Xu X X and Cai W P 2010 Adv. Funct. Mater. 20 561
|
|
| [40] | Liu H Y, Zeng F, Lin Y S, Wang G Y and Pan F 2013 Appl. Phys. Lett. 102 181908
|
|
| [41] | Zhan P, Wang W P, Xie Q, Li Z C and Zhang Z J 2012 J. Appl. Phys. 111 103524
|
|
| [42] | Hu Y, Zhang Z J, Zhou Q, Liu W, Li Z C and Meng D Q 2010 Nano Res. 3 438
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|