CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Optical study on topological superconductor candidate Sr-doped Bi2Se3 |
Jialun Liu(刘佳伦)1, Chennan Wang(王晨南)2,†, Tong Lin(林桐)2, Liye Cao(曹立叶)1, Lei Wang(王蕾)1, Jiaji Li(李佳吉)1, Zhen Tao(陶镇)1, Nan Shen(申娜)1, Rina Wu(乌日娜)1, Aifang Fang(房爱芳)1, Nanlin Wang(王楠林)2,3, and Rongyan Chen(陈荣艳)1,‡ |
1 Center for Advanced Quantum Studies and Department of Physics, Beijing Normal University, Beijing 100875, China; 2 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China; 3 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China |
|
|
Abstract Utilizing infrared spectroscopy, we study the charge dynamics of the topological superconductor candidate Sr$_x$Bi$_2$Se$_3$. The frequency-dependent reflectivity $R(\omega$) demonstrates metallic feature and the scattering rate of the free carriers decreases with temperature decreasing. The plasma edge shows a slight blue shift upon cooling, similar to the behavior of Cu$_x$Bi$_2$Se$_3$. As the carrier concentration $n$ obtained by Hall resistivity increases slightly with the decreasing temperature, the effective mass is proved to increase as well, which is in contrast with that of Cu$_x$Bi$_2$Se$_3$.We also perform the ultrafast pump-probe study on the Sr$_{0.2}$Bi$_2$Se$_3$ compounds. Resembling its parent compound Bi$_2$Se$_3$, three distinct relaxation processes are found to contribute to the transient reflectivity. However, the deduced relaxation times are quite different. In addition, the electron-optical-phonon coupling constant is identified to be $\lambda = 0.88$.
|
Received: 18 February 2022
Revised: 14 June 2022
Accepted manuscript online: 18 June 2022
|
PACS:
|
74.70.-b
|
(Superconducting materials other than cuprates)
|
|
78.30.-j
|
(Infrared and Raman spectra)
|
|
78.47.jg
|
(Time resolved reflection spectroscopy)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074042 and 11704033), the National Key Research and Development Program of China (Grant Nos. 2021YFA1400400 and 2016YFA0302300), and the Fundamental Research Funds for the Central Universities. |
Corresponding Authors:
Rongyan Chen
E-mail: rychen@bnu.edu.cn
|
Cite this article:
Jialun Liu(刘佳伦), Chennan Wang(王晨南), Tong Lin(林桐), Liye Cao(曹立叶), Lei Wang(王蕾), Jiaji Li(李佳吉), Zhen Tao(陶镇), Nan Shen(申娜), Rina Wu(乌日娜), Aifang Fang(房爱芳), Nanlin Wang(王楠林), and Rongyan Chen(陈荣艳) Optical study on topological superconductor candidate Sr-doped Bi2Se3 2022 Chin. Phys. B 31 117402
|
[1] Qi X L, Hughes T L, Raghu S and Zhang S C 2009 Phys. Rev. Lett. 102 187001 [2] Wray L A, Xu S Y, Xia Y Q, Hor Y S, Qian D, Fedorov A V, Lin H, Bansil A, Cava R J and Hasan M Z 2010 Nat. Phys. 6 855 [3] Fu L and Berg E 2010 Phys. Rev. Lett. 105 097001 [4] Sato M and Ando Y 2017 Rep. Prog. Phys. 80 076501 [5] Fu L and Kane C L 2007 Phys. Rev. B 76 045302 [6] Fu L and Kane C L 2008 Phys. Rev. Lett. 100 096407 [7] Neupane M, Ishida Y, Sankar R, Zhu J X, Sanchez D S, Belopolski I, Xu S Y, Alidoust N, Hosen M M, Shin S, Chou F C, Hasan M Z and Durakiewicz T 2016 Sci. Rep. 6 22557 [8] Kriener M, Segawa K, Ren Z, Sasaki S and Ando Y 2011 Phys. Rev. Lett. 106 127004 [9] Yonezawa S 2016 AAPPS Bull. 26 3 [10] Ando Y and Fu L 2015 Annu. Rev. Condens. Matter Phys. 6 361 [11] Hor Y S and Williams A J, Checkelsky J G, Roushan P, Seo J, Xu Q, Zandbergen H W, Yazdani A, Ong N P and Cava R J 2010 Phys. Rev. Lett. 104 057001 [12] Fu L 2014 Phys. Rev. B 90 100509(R) [13] Sasaki S, Kriener M, Segawa K, Yada K, Tanaka Y, Sato M and Ando Y 2011 Phys. Rev. Lett. 107 217001 [14] Levy N, Zhang T, Ha J, Sharifi F, Talin A A, Kuk Y and Stroscio J A 2013 Phys. Rev. Lett. 110 117001 [15] Mizushima T, Yamakage A, Sato M and Tanaka Y 2014 Phys. Rev. B 90 184516 [16] Hashimoto T, Yada K, Yamakage A, Sato M and Tanaka Y 2013 J. Phys. Soc. Jpn. 82 044704 [17] Yonezawa S, Tajiri K, Nakata S, Nagai Y, Wang Z W, Segawa K, Ando Y and Maeno M 2017 Nat. Phys. 13 123 [18] Du G, Li Y F, Schneeloch J, Zhong R D, Gu G D, Yang H, Lin H and Wen H H 2017 Sci. China Phys. Mech. Astron. 60 037411 [19] Pan Y, Nikitin A M, Araizi G K, Huang Y K, Matsushita Y, Naka T and Visser A 2016 Sci. Rep. 6 28632 [20] Nikitin A M, Pan Y, Huang Y K, Naka T and Visser A 2016 Phys. Rev. B 94 144516 [21] Smylie M P, Willa K, Claus H, Koshelev A K, Song K W, Kwok W K, Islam Z, Gu G D, Schneeloch J A, Zhong R D and Welp U 2018 Sci. Rep. 8 7666 [22] Willa K, Willa R, Song K W, Gu G D, Schneeloch J A, Zhong R D, Koshelev A E, Kwok W K and Welp U 2018 Phys. Rev. B 98 184509 [23] Kostylev I, Yonezawa S, Wang Z W, Ando Y and Maeno Y 2020 Nat. Commun. 11 4152 [24] Shen J Y, He W Y, Yuan N, Huang Z, Cho C W, Lee S H, Hor Y S, Law K T and Lortz R 2017 npj Quantum Mater. 2 59 [25] Asaba T, Lawson B J, Tinsman C, Chen L, Corbae P, Li G, Qiu Y, Hor Y S, Fu L and Li L 2017 Phys. Rev. X 7 011009 [26] Cho C W, Shen J Y, Lyu J, Atanov O, Chen Q X, Lee S H, Hor Y S, Gawryluk D J, Pomjakushina E, Bartkowiak M, Hecker M, Schmalian J and Lortz R 2020 Nat. Commun. 11 3056 [27] Schneeloch J A, Zhong R D, Xu Z J, Gu G D and Tranquada J M 2015 Phys. Rev. B 91 144506 [28] Liu Z H, Yao X, Shao J F, Zuo M, Pi L, Tan S, Zhang C J and Zhang Y H 2015 J. Am. Chem. Soc. 137 10512 [29] Kobayashi K, Ueno T, Fujiwara H, Yokoya T and Akimitsu J 2017 Phys. Rev. B 95 180503(R) [30] Shruti, Maurya V K, Neha P, Srivastava p and Patnaik S 2015 Phys. Rev. B 92 020506(R) [31] Tanner D B 2015 Phys. Rev. B 91 035123 [32] Dong T, Yuan R H, Shi Y G and Wang N L 2013 Chin. Phys. Lett. 30 127801 [33] Park H J, Sandilands L J, You J S, Ji H S, Sohn C H, Han J W, Moon S J, Kim K W, Shim J H, Kim J S and Noh T W 2016 Phys. Rev. B 93 205122 [34] Qi J, Chen X, Yu X, Zimansky P C, Smirnov D, Tolk N H, Miotkowski I, Cao H, Chen Y P,Wu Y, Qiao S and Jiang Z 2010 Appl. Phys. Lett. 97 182102 [35] Glinka Y D, Babakiray S, Johnson T A, Bristow A D, Holcomb M B and Lederman D 2013 Appl. Phys. Lett. 103 151903 [36] Rast S, Schneider M L, Onellion M, Zeng X H, Si W D, Xi X X, Abrecht M, Ariosa D, Pavuna D, Ren Y H, Lüpke G and Perakis I 2001 Phys. Rev. B 64 214505 [37] Kaganov M I, Lifshitz E M and Tanatarov L V 1957 Sov. Phys. JETP 4 173 [38] Allen P B 1987 Phys. Rev. Lett. 59 1460 [39] Wu Q, Zhou H X, Wu Y L, Hu L L, Ni S L, Tian Y C, Sun F, Zhou F, Dong X L, Zhao Z X and Zhao J M 2020 Chin. Phys. Lett. 37 097802 [40] Li M T, Fang Y F, Pei C Y, Qi Y P and Wang L 2020 J. Phys.: Condens. Matter 32 385701 [41] Richter W and Becker C R 1977 Phys. Status Solidi B 84 619 [42] Sohier T, Ponomarev E, Gibertini M, Berger H, Marzari N, Ubrig N and Morpurgo A F 2019 Phys. Rev. X 9 031019 [43] Leng H, Cherian D, Huang Y K, Orain J C, Amato A and Visser A 2018 Phys. Rev. B 97 054503 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|