Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 077802    DOI: 10.1088/1674-1056/22/7/077802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

A 1550-nm linearly tunable CW single-mode external cavity diode laser based on a single-cavity all-dielectric thin-film Fabry–Pérot filter

Xiao Xiao (肖啸), Lu Yuan-Fu (鲁远甫), Yu Feng-Qi (于峰崎), Jin Lei (金雷)
Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China Chinese University of Hong Kong, Hong Kong, China
Abstract  A 1550-nm linearly tunable CW single-mode external cavity diode laser (ECDL) based on a single-cavity all-dielectric thin-film Fabry–Pérot filter (s-AFPF) is proposed and realized in this paper. Its internal optical components as well as their operation mechanisms are introduced first, and then its longitudinal mode output characteristic is theoretically analyzed. Afterwards, we set up the experimental platform for the output characteristic measurement of this tunable ECDL; under different experimental conditions, we execute accurate and real-time measurements for the output central wavelength, output optical power, output longitudinal mode distribution, and the line-width of the tunable ECDL in its tuning process. By summing up the optimal experimental condition from the measured data, we obtain the optimal tunable relevant parameters ECDL of the tunable ECDL has a linear mode-hop-free wavelength tuning region of 1547.203 nm-1552.426 nm, a stable output optical power in the range of 40 μW-50 μW, and a stable output longitudinal mode distribution of a single longitudinal mode with a line-width in the range of 100 MHz-150 MHz. This tunable ECDL can be used in environmental gas monitoring, atomic and molecular laser spectroscopy research, precise measurements, and so on.
Keywords:  thin-film optical properties      tunable external cavity diode laser      laser spectroscopy  
Received:  12 October 2012      Revised:  01 December 2012      Accepted manuscript online: 
PACS:  78.66.-w (Optical properties of specific thin films)  
  42.55.Px (Semiconductor lasers; laser diodes)  
  42.62.Fi (Laser spectroscopy)  
  42.60.Fc (Modulation, tuning, and mode locking)  
Fund: Project supported by the Key Laboratory of Functional Crystals and Laser Technology, Chinese Academy of Sciences (Grant No. JTJG201109), the Guangdong Province & Chinese Academy of Sciences Comprehensive Strategic Cooperation Project (Grant No. 2010A090100014), and the 2009 Shenzhen Technology Research and Development Fund, China (Grant No. O702011001).
Corresponding Authors:  Yu Feng-Qi     E-mail:  fq.yu@siat.ac.cn

Cite this article: 

Xiao Xiao (肖啸), Lu Yuan-Fu (鲁远甫), Yu Feng-Qi (于峰崎), Jin Lei (金雷) A 1550-nm linearly tunable CW single-mode external cavity diode laser based on a single-cavity all-dielectric thin-film Fabry–Pérot filter 2013 Chin. Phys. B 22 077802

[1] Ye C Y 2004 World Scientific, Singapore
[2] de Labachelerie M and Passedat G 1993 Appl. Opt. 32 269
[3] Bagley M, Wyatt R, Elton D J, Wickes H J, Spurdens P C, Seltzer C P, Cooper D M and Devlin W J 1990 Electron. Lett. 26 267
[4] Tabuchi H and Ishikawa H 1990 Electron. Lett. 26 742
[5] Favre F, Le Guen D, Simon J C and Landousies B 1986 Electron. Lett. 22 795
[6] Favre F and Le Guen D 1991 Electron. Lett. 27 183
[7] Levin L 2002 Opt. Lett. 27 23
[8] Liu K and Littman M G 1981 Opt. Lett. 6 117
[9] Shoshan I, Danon N N and Oppenheim U P 1977 J. Appl. Phys. 48 4495
[10] Littman M G and Metcalf H J 1978 Appl. Opt. 17 2224
[11] McNicholl P and Metcalf H J 1985 Appl. Opt. 24 2757
[12] Salathe R P 1979 Appl. Phys. 20 1
[13] Boshier M G, Berkeland D, Hinds E A and Sandoghdar V 1991 Opt. Commun. 85 355
[14] Hidaka T and Nakamoto T 1989 Electron. Lett. 25 1320
[15] Coquin G A and Cheung K W 1988 Electron. Lett. 24 599
[16] Andrews J R 1991 Opt. Lett. 16 732
[17] Greiner G, Boggs B, Wang T and Mossberg T W 1998 Opt. Lett. 23 1280
[18] Macleod H A 1999 Institute of Physics, London
[19] Zorabedian P and Trutna Jr W R 1988 Opt. Fiber Commun. 1 WQ27
[20] Zorabedian P and Trutna Jr W R 1988 Opt. Lett. 13 826
[21] Zorabedian P 2000 U.S. Patent. 108 355
[22] Svilans 2003 U.S. Patent. 556 599
[23] Baillard X, Gauguet A, Bize S, Lemonde P, Laurent P, Clairon A and Rosenbusch P 2006 Opt. Commun. 266 609
[24] Gilowski M, Schubert C, Zaiser M, Herr W, Wübbena T, Wendrich T, Müller T, Rasel E M and Ertmer W 2007 Opt. Commun. 280 443
[25] Wang B, Lv X K and Chen J B 2011 Chin. Opt. Lett. 9 041402
[26] Xiao X and Yu F Q 2011 SPIE Opt. Eng. 50 034201
[27] Ludeke R and Harris E P 1972 Appl. Phys. Lett. 20 499
[1] Anisotropic stimulated emission cross-section measurement in Nd: YVO4
Rui Guo(郭瑞), Yijie Shen(申艺杰), Yuan Meng(孟鸢), Mali Gong(巩马理). Chin. Phys. B, 2019, 28(4): 044204.
[2] Active hyperspectral imaging with a supercontinuum laser source in the dark
Zhongyuan Guo(郭中源), Yu Liu(刘煜), Xin Zheng(郑鑫), Ke Yin(殷科). Chin. Phys. B, 2019, 28(3): 034206.
[3] Highly-sensitive NO, NO2, and NH3 measurements with an open-multipass cell based on mid-infrared wavelength modulation spectroscopy
Xiang Chen(陈祥), Chen-Guang Yang(杨晨光), Mai Hu(胡迈), Jian-Kang Shen(沈建康), Er-Chao Niu(牛二超), Zhen-Yu Xu(许振宇), Xue-Li Fan(范雪丽), Min Wei(魏敏), Lu Yao(姚路), Ya-Bai He(何亚柏), Jian-Guo Liu(刘建国), Rui-Feng Kan(阚瑞峰). Chin. Phys. B, 2018, 27(4): 040701.
[4] Frequency doubled femtosecond Ti:sapphire laser with an assisted enhancement cavity
Jin-Wei Zhang(张金伟), Hai-Nian Han(韩海年), Lei Hou(侯磊), Long Zhang(张龙),Zi-Jiao Yu(于子蛟), De-Hua Li(李德华), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(1): 014205.
[5] Sensitive absorption measurements of hydrogen sulfide at 1.578 μm using wavelength modulation spectroscopy
Xia Hua (夏滑), Dong Feng-Zhong (董凤忠), Wu Bian (吴边), Zhang Zhi-Rong (张志荣), Pang Tao (庞涛), Sun Peng-Shuai (孙鹏帅), Cui Xiao-Juan (崔小娟), Han Luo (韩荦), Wang Yu (王煜). Chin. Phys. B, 2015, 24(3): 034204.
[6] Temperature and number evolution of cold cesium atoms inside a wall-coated glass cell
Huang Jia-Qiang (黄家强), Zhang Jian-Wei (张建伟), Wang Shi-Guang (王时光), Wang Zheng-Bo (王正博), Wang Li-Jun (王力军). Chin. Phys. B, 2015, 24(11): 113701.
[7] Off-resonant double-resonance optical-pumping spectra and their application in a multiphoton cesium magneto-optical trap
Yang Bao-Dong (杨保东), He Jun (何军), Wang Jun-Min (王军民). Chin. Phys. B, 2014, 23(5): 054205.
[8] Magneto–optical trap for neutral mercury atoms
Liu Hong-Li (刘洪力), Yin Shi-Qi (尹士奇), Liu Kang-Kang (刘亢亢), Qian Jun (钱军), Xu Zhen (徐震), Hong Tao (洪涛), Wang Yu-Zhu (王育竹). Chin. Phys. B, 2013, 22(4): 043701.
[9] Double-resonance optical-pumping effect and ladder-type electromagnetically induced transparency signal without Doppler background in cesium atomic vapour cell
Yang Bao-Dong(杨保东), Gao Jing(高静), Liang Qiang-Bing(梁强兵), Wang Jie(王杰), Zhang Tian-Cai(张天才), and Wang Jun-Min(王军民). Chin. Phys. B, 2011, 20(4): 044202.
[10] Radiative lifetime measurements of odd-parity high-excited levels of Sn I by time-resolved laser spectroscopy
Xu Jia-Xin(徐嘉鑫), Feng Yan-Yan(凤艳艳), Sun Gui-Juan(孙桂娟), and Dai Zhen-Wen(戴振文). Chin. Phys. B, 2009, 18(9): 3828-3832.
[11] Measurement of hyperfine structure and isotope shifts in the 580.56nm line of 142-145,146,148,150Nd+
Ma Hong-Liang (马洪良). Chin. Phys. B, 2005, 14(3): 511-515.
[12] Hyperfine structure of singly ionized lanthanum and praseodymium
Ma Hong-Liang (马洪良). Chin. Phys. B, 2002, 11(9): 905-909.
[13] MEASUREMENT OF HYPERFINE COUPLING CONSTANTS OF THE EXCITED STATES 4f7(8S07/2)6p3/2(7/2, 3/2) IN 151,153Eu+
Ma Hong-liang (马洪良), Yang Fu-jia (杨福家). Chin. Phys. B, 2001, 10(6): 512-515.
No Suggested Reading articles found!