INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Steady and transient behavior of perylene under high pressure |
Ting-Ting Wang(王亭亭)1, Yu Zhang(张宇)1, Hong-Yu Tu(屠宏宇)1, Lu Han(韩露)1, Ji-Chao Cheng(程基超)1, Xin Wang(王鑫)1, Fang-Fei Li(李芳菲)1, Ling-Yun Pan(潘凌云)1,†, and Tian Cui(崔田)1,2,‡ |
1 State Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China; 2 School of Physical Science and Technology, Ningbo University, Ningbo 315211, China |
|
|
Abstract Pressure can reduce the distances among atoms, thereby modifying the overall optical characteristics of molecules. In this article, the excited state behavior of perylene is carefully observed under isotropic pressure and non-complexing condition. In a steady state, absorption peak shows red shift and spectral width are broadened with pressure increasing, which is ascribed to the π-electron delocalization between molecules. In a transient state, the transition dynamics presents a wavelike tendency with pressure increasing because the shift of self-tapping exciton state is contrary to that of Y-state with pressure increasing. The results conduce to understanding the influence of inter-molecule interaction on excited state behavior with inter-molecule distance decreasing, which contributes to studying the materials under extreme condition.
|
Received: 10 February 2021
Revised: 31 March 2021
Accepted manuscript online: 19 April 2021
|
PACS:
|
82.40.Fp
|
(Shock wave initiated reactions, high-pressure chemistry)
|
|
33.20.-t
|
(Molecular spectra)
|
|
82.53.-k
|
(Femtochemistry)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0305900 and 2017YFA0403704), the National Natural Science Foundation of China (Grant Nos. 61575079, 51632002, 11804113, and 51720105007), the Natural Science Foundation of Jilin Province, China (Grant No. 20180101230JC), and the Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRT_15R23). |
Corresponding Authors:
Ling-Yun Pan, Tian Cui
E-mail: ply@jlu.edu.cn;cuitian@nbu.edu.cn
|
Cite this article:
Ting-Ting Wang(王亭亭), Yu Zhang(张宇), Hong-Yu Tu(屠宏宇), Lu Han(韩露), Ji-Chao Cheng(程基超), Xin Wang(王鑫), Fang-Fei Li(李芳菲), Ling-Yun Pan(潘凌云), and Tian Cui(崔田) Steady and transient behavior of perylene under high pressure 2021 Chin. Phys. B 30 118201
|
[1] Liu J Y, Fan W H, Han K L, Xu D L and Lou N Q 2003 J. Phys. Chem. A 107 1914 [2] Liu J Y, Fan W H, Han K L, Deng W Q, Xu D L and Lou N Q 2003 J. Phys. Chem. A 107 10857 [3] Hess B C, Kanner G S, Vardeny Z V and Baker G L 1991 Phys. Rev. Lett. 66 2364 [4] Zhong Q, Wang Z, Sun Y, Zhu Q and Kong F 1996 Chem. Phys. Lett. 248 277 [5] Dutt G B and Ghanty T K 2004 J. Phys. Chem. A 108 6090 [6] Lin A L, Wang K, Zhao Y, Hao J and Zou B 2007 Chin. Phys. Lett. 24 3085 [7] Hemley R J 2000 Ann. Rev. Phys. Chem. 51 763 [8] Zhang L J, Wang Y C, Lv J and Ma Y M 2017 Nat. Rev. Mater. 2 17005 [9] Zakharov B A and Boldyreva E V 2019 CrystEngComm 21 10 [10] Wang C, Dong H, Jiang L and Hu W 2018 Chem. Soc. Rev. 47 422 [11] Heek T, Fasting C, Rest C, Zhang X, Wuerthner F and Haag R 2010 Chem. Commun. 46 1884 [12] Bo F, Gao B, Duan W, Li H and Bai Q 2013 RSC Adv. 3 17007 [13] Fukaminato T, Doi T, Tamaoki N, Okuno K, Ishibashi Y, Miyasaka H and Irie M 2011 J. Am. Chem. Soc. 133 4984 [14] Zhong Y, Trinh M T, Chen R, Purdum G E, Khlyabich P P, Sezen M, Oh S, Zhu H, Fowler B and Zhang B 2015 Nat. Commun. 6 8242 [15] Zhong Y, Trinh T M, Chen R, Wang W and Nuckolls C 2014 J. Am. Chem. Soc. 136 15215 [16] Morandeira A, Fortage J, Edvinsson T, Lepleux L, Blart E, Boschloo G, Hagfeldt A, Hammarstrom L and Odobel F 2008 J. Phys. Chem. C 112 1721 [17] Li H, Zhong B, He L, Yang G, Li Y, Wu S and Liu J 2002 Appl. Phys. Lett. 80 2299 [18] Li H, Han J, Zhao H, Liu X and Luo Y 2019 J. Phys. Chem. Lett. 10 748 [19] Liu B G, Jin M X, Liu H, He C Y, Jiang D Wand Ding D J 2008 Appl. Phys. Lett. 92 241916 [20] Liu B, He C, Jin M, Wang Q and Lin S H 2010 Opt. Express 18 6863 [21] Li Y, Liu X, Han J, Cao B and Shi Y 2019 Spectrochim. Acta A Mol. Biomol. Spectrosc. 222 117244 [22] Li H, Zhong B, He L M, Wu S K, Li Y and Yang G Q 2002 J. Phys.: Condens. Matter 14 10471 [23] Orgzall I, Emmerling F, Schulz B and Franco O 2008 J. Phys.: Condens. Matter 20 295206 [24] Nagura K, Saito S, Yusa H, Yamawaki H, Fujihisa H, Sato H, Shimoikeda Y and Yamaguchi S 2013 J. Am. Chem. Soc. 135 10322 [25] Xiao L P, Yang X and Zeng L 2018 Mol. Simul. 44 330 [26] Fedorov I A 2017 Comput. Mater. Sci. 139 252 [27] Donaldson D M, Robertson J M and White J G 1953 Proc. Math. Phys. Eng. Sci. 220 311 [28] Camerman A and Trotter J 1964 Proc. Royal Soc. London 279 129 [29] Piermarini G J, Block S, Barnett J D and Forman R A 1975 J. Appl. Phys. 46 2774 [30] You S J, Chen L C and Jin C Q 2009 Chin. Phys. Lett. 26 096202 [31] Lu D X, Wang Y H, Li F F, Huang X L, Pan L Y, Gong Y B, Han B, Zhou Q and Cui T 2015 J. Phys. Chem. C 119 13194 [32] Gao B R, Wang H Y, Yang Z Y, Wang H, Wang L, Jiang Y, Hao Y W, Chen Q D, Li Y P, Ma Y G and Sun H B 2011 J. Phys. Chem. C 115 16150 [33] Pan L Y, Zhang Y L, Wang H Y, Liu H, Luo J S, Xia H, Zhao L, Chen Q D, Xu S P, Gao B R, Fu L M and Sun H B 2011 Nanoscale 3 2882 [34] Matsui A, Ohno T, Mizuno K I, Yokoyama T and Kobayashi M 1987 Chem. Phys. 111 121 [35] Johnson P C and Offen H W 1972 J. Phys. Chem. 57 1473 [36] Offen H W and Beardslee R A 1968 J. Chem. Phys. 48 3584 [37] Oehzelt M, Resel R and Nakayama A 2002 Phys. Rev. B 66 174104 [38] Weinmeier K, Puschning P, Ambrosch-Drax C, Heimel G and Resel R 2001 MRS Online Proceedings Library (OPL) 665 820 [39] Wiederhorn S and Drickamer H G 1959 J. Phys. Chem. Solids 9 330 [40] Pescitelli G, Bari L D and Berova N 2014 Chem. Soc. Rev. 43 5211 [41] Fedorov I A, Zhuravlev Y N and Berveno V P 2013 J. Chem. Phys. 138 094509 [42] Kobayashi M, Mizuno K I and Matsui A 2007 J. Phys. Soc. Jpn. 58 809 [43] Jones P F and Nicol M 1968 J. Chem. Phys. 48 5440 [44] Furube A, Murai M, Tamaki Y, Watanabe S and Katoh R 2006 J. Phys. Chem. A 110 6465 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|