Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 128503    DOI: 10.1088/1674-1056/22/12/128503
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

0.15-μm T-gate In0.52Al0.48As/In0.53Ga0.47As InP-based HEMT with fmax of 390 GHz

Zhong Ying-Hui (钟英辉)a, Zhang Yu-Ming (张玉明)a, Zhang Yi-Men (张义门)a, Wang Xian-Tai (王显泰)b, Lü Hong-Liang (吕红亮)a, Liu Xin-Yu (刘新宇)b, Jin Zhi (金智)b
a School of Microelectronics, Xidian University, Xi’an 710071, China;
b Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
Abstract  In this paper, 0.15-μm gate-length In0.52Al0.48As/In0.53Ga0.47As InP-based high electron mobility transistors (HEMTs) each with a gate-width of 2×50 μm are designed and fabricated. Their excellent DC and RF characterizations are demonstrated. Their full channel currents and extrinsic maximum transconductance (gm,max) values are measured to be 681 mA/mm and 952 mS/mm, respectively. The off-state gate-to-drain breakdown voltage (BVGD) defined at a gate current of-1 mA/mm is 2.85 V. Additionally, a current-gain cut-off frequency (fT) of 164 GHz and a maximum oscillation frequency (fmax) of 390 GHz are successfully obtained; moreover, the fmax of our device is one of the highest values in the reported 0.15-μm gate-length lattice-matched InP-based HEMTs operating in a millimeter wave frequency range. The high gm,max, BVGD, fmax, and channel current collectively make this device a good candidate for high frequency power applications.
Keywords:  breakdown voltage      cut-off frequency      high electron mobility transistors      maximum oscillation frequency  
Received:  06 March 2013      Revised:  08 April 2013      Accepted manuscript online: 
PACS:  85.30.-z (Semiconductor devices)  
  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  85.30.Tv (Field effect devices)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2010CB327502 and 2010CB327505) and the Advance Research Project (Grant No. 5130803XXXX).
Corresponding Authors:  Jin Zhi     E-mail:  jinzhi@ime.ac.cn

Cite this article: 

Zhong Ying-Hui (钟英辉), Zhang Yu-Ming (张玉明), Zhang Yi-Men (张义门), Wang Xian-Tai (王显泰), Lü Hong-Liang (吕红亮), Liu Xin-Yu (刘新宇), Jin Zhi (金智) 0.15-μm T-gate In0.52Al0.48As/In0.53Ga0.47As InP-based HEMT with fmax of 390 GHz 2013 Chin. Phys. B 22 128503

[1] Zhang X F, Wang L, Liu J, Wei L and Xu J 2013 Chin. Phys. B 22 017202
[2] Li D L and Zeng Y P 2006 Chin. Phys. B 15 2735
[3] Kong X, Wei K, Liu G G and Liu X Y 2012 Chin. Phys. Lett. 29 078502
[4] Kong X, Wei K, Liu G G and Liu X Y 2012 Chin. Phys. B 21 128501
[5] Kim D H and del Alamo J A 2008 IEEE Electron Dev. Lett. 29 830
[6] Lai R, Mei X B, Deal W R, Yoshida W, Kim Y M, Liu P H, Lee J, Uyeda J, Radisic V, Lang M, Gaier T, Samoska L and Fung A 2007 IEEE International Electron Devices Meeting, December 10–12, 2007, Washington, DC, USA, p. 609
[7] Somerville M H, Ernst A and del Alamo J A 2000 IEEE Trans. Electron Dev. 47 922
[8] Zhong Y H, Wang X T, Su Y B, Cao Y X, Jin Z, Zhang Y M and Liu X Y 2012 J. Semicond. 33 054007
[9] Bahl S R and del Alamo J A 1993 IEEE Trans. Electron Dev. 40 1558
[10] Chertouk M, Dammann M, Köhler K and Weimann G 2000 IEEE Electron Dev. Lett. 21 97
[11] Boudrissa M, Delos E, Wallaert X, Thbron D and De Jaeger J C 2001 International Conference on Indium Phosphide and Related Materials Conference Proceedings, May 14–18, 2001, Nara, Japan, p. 196
[12] Yoon H S, Lee J H, Shin J Y, Hong J Y, Kang D M, Kim H C, Lee K H and Kim B W 2004 J. Korean Phys. Soc. 45 S594
[13] Kim S and Adesida I 2006 IEEE Electron Dev. Lett. 27 873
[14] Mei X B, Farkas D, Luo W B, Lin C H, Lee L J, Liu W, Liu P H, Cavus A and Lai R 2009 IEEE International Conference on Indium Phosphide & Related Materials, May 10–14, 2009, Newport Beach, CA, USA, p. 204
[1] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[2] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[3] Impact of gate offset in gate recess on DC and RF performance of InAlAs/InGaAs InP-based HEMTs
Shurui Cao(曹书睿), Ruize Feng(封瑞泽), Bo Wang(王博), Tong Liu(刘桐), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058502.
[4] Enhancement of fMAX of InP-based HEMTs by double-recessed offset gate process
Bo Wang(王博), Peng Ding(丁芃), Rui-Ze Feng(封瑞泽), Shu-Rui Cao(曹书睿), Hao-Miao Wei(魏浩淼), Tong Liu(刘桐), Xiao-Yu Liu(刘晓宇), Hai-Ou Li(李海鸥), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(5): 058506.
[5] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[6] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[7] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[8] Impact of symmetric gate-recess length on the DC and RF characteristics of InP HEMTs
Ruize Feng(封瑞泽), Bo Wang(王博), Shurui Cao(曹书睿), Tong Liu(刘桐), Yongbo Su(苏永波), Wuchang Ding(丁武昌), Peng Ding(丁芃), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(1): 018505.
[9] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[10] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[11] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[12] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[13] Novel Si/SiC heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit
Baoxing Duan(段宝兴), Xin Huang(黄鑫), Haitao Song (宋海涛), Yandong Wang(王彦东), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(4): 048503.
[14] Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors
Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(4): 040502.
[15] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
No Suggested Reading articles found!