Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 128504    DOI: 10.1088/1674-1056/22/12/128504
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Open critical area model and extraction algorithm based on the net flow-axis

Wang Le (王乐)a b, Wang Jun-Ping (王俊平)a, Gao Yan-Hong (高艳红)a, Xu Dan (许丹)a, Li Bo-Bo (李玻玻)a, Liu Shi-Gang (刘士钢)b
a School of Communication Engineering, Xidian University, Xi’an 710071, China;
b Microelectronics Institute, Xidian University, Xi’an 710071, China
Abstract  In the integrated circuit manufacturing process, the critical area extraction is a bottleneck to the layout optimization and the integrated circuit yield estimation. In this paper, we study the problem that the missing material defects may result in the open circuit fault. Combining the mathematical morphology theory, we present a new computation model and a novel extraction algorithm for the open critical area based on the net flow-axis. Firstly, we find the net flow-axis for different nets. Then, the net flow-edges based on the net flow-axis are obtained. Finally, we can extract the open critical area by the mathematical morphology. Compared with the existing methods, the nets need not to divide into the horizontal nets and the vertical nets, and the experimental results show that our model and algorithm can accurately extract the size of the open critical area and obtain the location information of the open circuit critical area.
Keywords:  critical area      mathematical morphology      layout optimization      yield  
Received:  24 January 2013      Revised:  17 July 2013      Accepted manuscript online: 
PACS:  85.40.Bh (Computer-aided design of microcircuits; layout and modeling)  
  61.72.-y (Defects and impurities in crystals; microstructure)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61173088 and 61070143) and the 111 Project (Grant No. B08038).
Corresponding Authors:  Wang Le     E-mail:  xianwangle@163.com

Cite this article: 

Wang Le (王乐), Wang Jun-Ping (王俊平), Gao Yan-Hong (高艳红), Xu Dan (许丹), Li Bo-Bo (李玻玻), Liu Shi-Gang (刘士钢) Open critical area model and extraction algorithm based on the net flow-axis 2013 Chin. Phys. B 22 128504

[1] Muller D 2006 IEEE/ACM International Conference on Computer-Aided Design, November 5–9, 2006, San Jose, CA, USA, p. 480
[2] Minsik C, Hua X, Puri R and Pan D Z 2008 IEEE Trans. Comput. Aid. Des. Integr. Circ. Syst. 27 872
[3] Liu S G, Wang J P, Su Y B and Wang L 2012 Chin. Phys. B 21 098503
[4] Zhang C X, Ding X H, Wang R, Zhou Y Q and Kong L M 2012 Chin. Phys. B 21 034202
[5] Sinha S, Su Q, Wen L N, Lee F, Chiang C, Cheng Y K, Lin J L and Harn Y C 2008 IEEE Trans. Semicond. Manuf. 21 14
[6] Pan D Z, Cho M and Kun Y 2010 Foundations and Trends in Electronic Design Automation 4 1
[7] Xue X Y, Xu S R, Zhang J C, Lin Z Y, Ma J C, Liu Z Y, Xue J S and Hao Y 2012 Chin. Phys. B 21 027803
[8] Cong J, Fan Y P and Jiang W 2006 IEEE/ACM International Conference on Computer Aided Design, November 5–9, 2006, San Jose, CA, USA, p. 7
[9] Cross D, Nequist E and Scheffer L 2007 2007 International Symposium on Physical Design, March 18–21, 2007, Austin, TX, USA, p. 171
[10] Zhu Z M, Hao B T, Li R and Yang Y T 2010 Acta Phys. Sin. 59 2003 (in Chinese)
[11] Ling X, Hu M B and Ding J X 2012 Chin. Phys. B 21 098902
[12] Barnett T S, Bickford J and Weger A J 2007 IEEE/SEMI Advanced Semiconductor Manufacturing Conference, June 11–12, 2007, Stresa, Italy, p. 351
[13] Ducotey G, Couvrat A, Audran V, Pepper D, Couturier L and David D 2008 IEEE/SEMI Advanced Semiconductor Manufacturing Conference, May 5–7, 2008, Cambridge, MA, USA, p. 138
[14] Izuka T, Ikeda M and Asada K 2007 IEEE Transactions on VLSI Systems 15 716
[15] Chong S, Rying E, Perry A, Lam S and St. Lawrence M A 2007 2007 IEEE/SEMI Advanced Semiconductor Manufacturing Conference, June 11–12, 2007, Stresa, Italy, p. 69
[16] Ronnie P, Eshwege H, Valfer E, David D, Pepper D, Cricchio F, Hinschberger B and Kolar D 2008 IEEE/SEMI Advanced Semiconductor Manufacturing Conference, May 5–7, 2008, Cambridge, MA, USA, p. 53
[17] Porat R, Dotan K, Hemar S, Levin L, Li K, Sung G, Lin C T, Lin S K and Wang H I 2008 IEEE/SEMI Advanced Semiconductor Manufacturing Conference, May 5–7, 2008, Cambridge, MA, USA, p. 11
[18] Jansen S, Florence G, Perry A and Fox S 2008 IEEE/SEMI Advanced Semiconductor Manufacturing Conference, May 5–7, 2008, Cambridge, MA, USA, p. 69
[19] Wang J P and Hao Y 2005 Chin. J. Semicond. 26 1514
[20] Dong G, Liu J, Xue M and Yang Y T 2011 Acta Phys. Sin. 60 046602 (in Chinese)
[21] Zhou S Y, Wang K, Zhang Y F, Pei W J, Pu C L and Li W 2011 Chin. Phys. B 20 080501
[22] Liu F, Zhao H, Li M, Ren F Y and Zhu Y B 2010 Chin. Phys. B 19 040513
[23] Deng S X and Liang S D 2012 Chin. Phys. B 21 047306
[24] Li D M, Wang Z H, Huang L Y and Gou Q J 2007 Chin. Phys. 16 3760
[25] Ao B Y, Xia J X, Chen P H, Hu W Y and Wang X L 2012 Chin. Phys. B 21 026103
[26] Wang J P and Hao Y 2009 Acta Phys. Sin. 58 4267 (in Chinese)
[27] Walker H and Director S W 1986 IEEE Trans. Comput. Aid. Des. Integr. Circ. Syst. 5 541
[28] Deng S X and Liang S D 2012 Chin. Phys. B 21 047306
[29] Feng Q, Xing T, Wang Q, Feng Q, Li Q, Bi Z W, Zhang J C and Hao Y 2012 Chin. Phys. B 21 017304
[30] Wang J P, Hao Y and Zhang J M 2007 Chin. Phys. 16 1796
[31] Meng Y J, Liu Y W and Tang Y H 2012 Chin. Phys. B 21 074206
[32] Sun D P and Hao Z X 2010 Journal of Computer Research and Development 47 1244 (in Chinese)
[33] Sun X L, Hao Y and Song G X 2007 Journal of Electronics & Information Technology 29 496 (in Chinese)
[34] Evanthia P 2011 IEEE Tran. Comput. Aid. Des. Integr. Circ. Syst. 30 704
[35] Wang J P and Hao Y 2006 Chin. Phys. 15 1621
[1] Numerical studies of atomic three-step photoionization processes with non-monochromatic laser fields
Xiao-Yong Lu(卢肖勇), Li-De Wang(王立德), and Yun-Fei Li(李云飞). Chin. Phys. B, 2022, 31(6): 063203.
[2] Effect of Cu doping on the secondary electron yield of carbon films on Ag-plated aluminum alloy
Tiancun Hu(胡天存), Shukai Zhu(朱淑凯), Yanan Zhao(赵亚楠), Xuan Sun(孙璇), Jing Yang(杨晶), Yun He(何鋆), Xinbo Wang(王新波), Chunjiang Bai(白春江), He Bai(白鹤), Huan Wei(魏焕), Meng Cao(曹猛), Zhongqiang Hu(胡忠强), Ming Liu(刘明), and Wanzhao Cui(崔万照). Chin. Phys. B, 2022, 31(4): 047901.
[3] A simple analytical model of laser direct-drive thin shell target implosion
Bo Yu(余波), Tianxuan Huang(黄天晅), Li Yao(姚立), Chuankui Sun(孙传奎), Wanli Shang(尚万里), Peng Wang(王鹏), Xiaoshi Peng(彭晓世), Qi Tang(唐琦), Zifeng Song(宋仔峰), Wei Jiang(蒋炜), Zhongjing Chen(陈忠靖), Yudong Pu(蒲昱东), Ji Yan(晏骥), Yunsong Dong(董云松), Jiamin Yang(杨家敏), Yongkun Ding(丁永坤), and Jian Zheng(郑坚). Chin. Phys. B, 2022, 31(4): 045204.
[4] Secondary electron emission yield from vertical graphene nanosheets by helicon plasma deposition
Xue-Lian Jin(金雪莲), Pei-Yu Ji(季佩宇), Lan-Jian Zhuge(诸葛兰剑), Xue-Mei Wu(吴雪梅), and Cheng-Gang Jin(金成刚). Chin. Phys. B, 2022, 31(2): 027901.
[5] Weakening effect of plastic yielding inception in thin hard coating systems
Xiao Huang(黄啸), Shujun Zhou(周述军), and Tianmin Shao(邵天敏). Chin. Phys. B, 2021, 30(3): 038104.
[6] Analysis of secondary electron emission using the fractal method
Chun-Jiang Bai(白春江), Tian-Cun Hu(胡天存), Yun He(何鋆), Guang-Hui Miao(苗光辉), Rui Wang(王瑞), Na Zhang(张娜), and Wan-Zhao Cui(崔万照). Chin. Phys. B, 2021, 30(1): 017901.
[7] Study on γ-ray source from the resonant reaction 19F(p,αγ)16O at Ep=340 keV
Fu-Long Liu(刘伏龙), Wan-Sha Yang(杨婉莎), Ji-Hong Wei(魏继红), Di Wu(吴笛), Yang-Fan He(何阳帆), Yu-Chen Li(李雨尘), Tian-Li Ma(马田丽), Yang-Ping Shen(谌阳平), Qi-Wen Fan(樊启文), Chuang-Ye He(贺创业), Bing Guo(郭冰), Nai-Yan Wang(王乃彦). Chin. Phys. B, 2020, 29(7): 070702.
[8] Absorption, quenching, and enhancement by tracer in acetone/toluene laser-induced fluorescence
Guang Chang(常光), Xin Yu(于欣), Jiangbo Peng(彭江波), Yang Yu(于杨), Zhen Cao(曹振), Long Gao(高龙), Minghong Han(韩明宏), and Guohua Wu(武国华). Chin. Phys. B, 2020, 29(12): 124212.
[9] Mechanism from particle compaction to fluidization of liquid-solid two-phase flow
Yue Zhang(张悦), Jinchun Song(宋锦春), Lianxi Ma(马连喜), Liancun Zheng(郑连存), Minghe Liu(刘明贺). Chin. Phys. B, 2020, 29(1): 014702.
[10] First polar direct-drive exploding-pusher target experiments on the ShenGuang laser facility
Bo Yu(余波), Jiamin Yang(杨家敏), Tianxuan Huang(黄天晅), Peng Wang(王鹏), Wanli Shang(尚万里), Xiumei Qiao(乔秀梅), Xuewei Deng(邓学伟), Zhanwen Zhang(张占文), Zifeng Song(宋仔峰), Qi Tang(唐琦), Xiaoshi Peng(彭晓世), Jiabin Chen(陈家斌), Yulong Li(理玉龙), Wei Jiang(蒋炜), Yudong Pu(蒲昱东), Ji Yan(晏骥), Zhongjing Chen(陈忠靖), Yunsong Dong(董云松), Wudi Zheng(郑无敌), Feng Wang(王峰), Shaoen Jiang(江少恩), Yongkun Ding(丁永坤), Jian Zheng(郑坚). Chin. Phys. B, 2019, 28(9): 095203.
[11] Secondary electron yield suppression using millimeter-scale pillar array and explanation of the abnormal yield-energy curve
Ming Ye(叶鸣), Peng Feng(冯鹏), Dan Wang(王丹), Bai-Peng Song(宋佰鹏), Yong-Ning He(贺永宁), Wan-Zhao Cui(崔万照). Chin. Phys. B, 2019, 28(7): 077901.
[12] New measurement of thick target yield for narrow resonance at Ex=9.17 MeV in the 13C(p, γ)14N reaction
Yong-Le Dang(党永乐), Fu-Long Liu(刘伏龙), Guang-Yong Fu(付光永), Di Wu(吴笛), Chuang-Ye He(贺创业), Bing Guo(郭冰), Nai-Yan Wang(王乃彦). Chin. Phys. B, 2019, 28(6): 060706.
[13] Overrun phenomenon and neutron yield in Coulomb explosion of deuterated alkane clusters driven by intense laser field
Hong-Yu Li(李洪玉), Mei-Dong Huang(黄美东), Ming Kang(康明), De-Jun Li(李德军). Chin. Phys. B, 2018, 27(6): 063602.
[14] An infrared and visible image fusion method based uponmulti-scale and top-hat transforms
Gui-Qing He(何贵青), Qi-Qi Zhang(张琪琦), Jia-Qi Ji(纪佳琪), Dan-Dan Dong(董丹丹), Hai-Xi Zhang(张海曦), Jun Wang(王珺). Chin. Phys. B, 2018, 27(11): 118706.
[15] Unusual softening behavior of yield strength in niobium at high pressures
Qiu-Min Jing(敬秋民), Qiang He(何强), Yi Zhang(张毅), Shou-Rui Li(李守瑞), Lei Liu(柳雷), Qi-Yue Hou(侯琪玥), Hua-Yun Geng(耿华运), Yan Bi(毕延), Yu-Ying Yu(俞宇颖), Qiang Wu(吴强). Chin. Phys. B, 2018, 27(10): 106201.
No Suggested Reading articles found!