Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 126803    DOI: 10.1088/1674-1056/22/12/126803
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Pits and adatoms at the interface of 1-ML C84/Ag (111)

Wang Peng (王鹏)a b, Zhang Han-Jie (张寒洁)a, Li Yan-Jun (李艳君)a, Sheng Chun-Qi (盛春荠)a, Li Wen-Jie (李文杰)a, Xing Xiu-Na (邢秀娜)a, Li Hai-Yang (李海洋)a, He Pi-Mo (何丕模)a, Bao Shi-Ning (鲍世宁)a, Li Hong-Nian (李宏年)a
a Department of Physics, Zhejiang University, Hangzhou 310027, China;
b Department of Applied Physics, Shandong University of Science and Technology, Qingdao 266590, China
Abstract  We prepare a well-defined C84 monolayer on the surface of Ag (111) and study the geometric structure by scanning tunneling microscopy (STM). The C84 molecules form a nearly close-packed incommensurate R30° lattice. The lattice is long-distance ordered with numerous local disorders. The monolayer exhibits complex bright/dim contrast; the largest height difference between the molecules can be greater than 0.4 nm. Annealing the monolayer at 380 ℃ can desorb part of the molecules, but more than sixty percent molecules stay on the Ag (111) surface even after the sample has been annealed at 650 ℃. Our analyses reveal that the 7-atom pits form beneath many molecules. Some other molecules sit at the 1-atom pits. Ag adatoms (those removed substrate atoms, accompanying the pit formation) play a very important role in this system. The adatoms can either stabilize or destabilize the monolayer, depending on the distribution manner of the adatoms at the interface. The distribution manner is determined by the co-play of the following factors: the dimension of the interstitial regions of the C84 overlayer, the number of the adatoms, and the long-distance migration of part adatoms.
Keywords:  1-ML C84/Ag (111)      geometric structure      pit      adatom      STM  
Received:  06 June 2013      Revised:  23 September 2013      Accepted manuscript online: 
PACS:  68.55.ap (Fullerenes)  
  68.35.Ct (Interface structure and roughness)  
  68.37.Ef (Scanning tunneling microscopy (including chemistry induced with STM))  
  68.43.Hn (Structure of assemblies of adsorbates (two-and three-dimensional clustering))  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11079028 and 11374258).
Corresponding Authors:  Li Hong-Nian     E-mail:  phylihn@public.zju.edu.cn

Cite this article: 

Wang Peng (王鹏), Zhang Han-Jie (张寒洁), Li Yan-Jun (李艳君), Sheng Chun-Qi (盛春荠), Li Wen-Jie (李文杰), Xing Xiu-Na (邢秀娜), Li Hai-Yang (李海洋), He Pi-Mo (何丕模), Bao Shi-Ning (鲍世宁), Li Hong-Nian (李宏年) Pits and adatoms at the interface of 1-ML C84/Ag (111) 2013 Chin. Phys. B 22 126803

[1] Wang P, Zhang H J, Li Y J, Sheng C Q, Shen Y, Li H Y, Bao S N and Li H N 2012 Phys. Rev. B 85 205445
[2] Maxwell A J, Brühwiler P A, Andersson S, Arvanitis D, Hernnäs B, Karis O, Mancini D C, Mårtensson N, Gray S M, Johansson M K J and Johansson L S O 1995 Phys. Rev. B 52 R5546
[3] Murray P W, Pedersen M Ø, Lægsgaard E, Stensgaard I and Besenbacher F 1997 Phys. Rev. B 55 9360
[4] Pedio M, Felici R, Torrelles X, Rudolf P, Capozi M, Rius J and Ferrer S 2000 Phys. Rev. Lett. 85 1040
[5] Weckesser J, Barth J V and Kern K 2001 Phys. Rev. B 64 R161403
[6] Felici R, Pedio M, Borgatti F, Iannotta S, Capozi M, Ciullo G and Stierle A 2005 Nat. Mater. 4 688
[7] Zhang X Q, He W, Zhao A D, Li H N, Chen L, Pai W W, Hou J G, Loy M M T, Yang J L and Xiao X D 2007 Phys. Rev. B 75 235444
[8] Lin C H, Lin K C, Tang T B and Pai W W 2008 J. Nanosci. Nanotechnol. 8 602
[9] Li H I, Pussi K, Hanna K J, Wang L L, Johnson D D, Cheng H P, Shin H, Curtarolo S, Moritz W, Smerdon J A, McGrath R and Diehl R D 2009 Phys. Rev. Lett. 103 056101
[10] Gardener J A, Briggs G A D and Castell M R 2009 Phys. Rev. B 80 235434
[11] Pai W W, Jeng H T, Cheng C M, Lin C H, Xiao X D, Zhao A D, Zhang X Q, Xu G, Shi X Q, Van Hove M A, Hsue C S and Tsuei K D 2010 Phys. Rev. Lett. 104 036103
[12] Shi X Q, Van Hove M A and Zhang R Q 2012 Phys. Rev. B 85 075421
[13] Stengel M, De Vita A and Baldereschi A 2003 Phys. Rev. Lett. 91 166101
[14] Weckesser J, Cepek C, Fasel R, Barth J V, Baumberger F, Greber T and Kern K 2001 J. Chem. Phys. 115 9001
[15] Chen W, Zhang H L, Huang H, Chen L and Wee A T S 2008 ACS Nano 2 693
[16] Tang L, Xie Y and Guo Q 2011 J. Chem. Phys. 135 114702
[17] Pussi K, Li H I, Shin H, Serkovic Loli L N, Shukla A K, Ledieu J, Fournée V, Wang L L, Su S Y, Marino K E, Snyder M V and Diehl R D 2012 Phys. Rev. B 86 205406
[18] Pai W W and Hsu C L 2003 Phys. Rev. B 68 R121403
[19] Pai W W, Hsu C L, Lin M C, Lin K C and Tang T B 2004 Phys. Rev. B 69 125405
[20] Guo S, Nagel P M, Deering A L, Van Lue S M and Alex Kandel S 2007 Surf. Sci. 601 994
[21] Wang X D, Hashizume T, Shinohara H, Saito Y, Nishina Y and Sakurai T 1993 Phys. Rev. B 47 15923
[22] Wang P, Ni J F, Meng L, Wang X B, Sheng C Q, Zhang W H, Xu Y, Xu F Q, Zhu J F and Li H N 2012 Carbon 50 1762
[23] Margadonna S, Brown C M, Dennis T J S, Lappas A, Pattison P, Prassides K and Shinohara H 1998 Chem. Mater. 10 1742
[24] Altman E I and Colton R J 1993 Surf. Sci. 295 13
[25] Hashizume T, Motai K, Wang X D, Shinohara H, Saito Y, Maruyama Y, Ohno K, Kawazoe Y, Nishina Y, Pickering H W, Kuk Y and Sakurai T 1993 Phys. Rev. Lett. 71 2959
[26] Lide D R 2007 CRC Handbook of Chemistry and Physics (Boca, Raton, FL: Taylor and Francis, Florida, 2007) Internet Version
[27] Li H N, Yang H, Wang X X, Ni J F, Wang P, Meng L, Wang X B, Kurash I, Qian H J, Wang J O and Liu Z Y 2009 J. Phys.: Condens. Matter 21 265502
[28] Segall M D, Lindan P J D, Probert M J, Pickard C J, Hasnip P J, Clark S J and Payne M C 2002 J. Phys.: Condens. Matter 14 2717
[29] Xu G, Shi X Q, Zhang R Q, Pai W W, Jeng H T and Van Hove M A 2012 Phys. Rev. B 86 075419
[30] Wang L L and Cheng H P 2004 Phys. Rev. B 69 165417
[31] Tang L, Zhang X, Guo Q, Wu Y N, Wang L L and Cheng H P 2010 Phys. Rev. B 82 125414
[1] Strain compensated type II superlattices grown by molecular beam epitaxy
Chao Ning(宁超), Tian Yu(于天), Rui-Xuan Sun(孙瑞轩), Shu-Man Liu(刘舒曼), Xiao-Ling Ye(叶小玲), Ning Zhuo(卓宁), Li-Jun Wang(王利军), Jun-Qi Liu(刘俊岐), Jin-Chuan Zhang(张锦川), Shen-Qiang Zhai(翟慎强), and Feng-Qi Liu(刘峰奇). Chin. Phys. B, 2023, 32(4): 046802.
[2] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[3] Evolution of microstructure, stress and dislocation of AlN thick film on nanopatterned sapphire substrates by hydride vapor phase epitaxy
Chuang Wang(王闯), Xiao-Dong Gao(高晓冬), Di-Di Li(李迪迪), Jing-Jing Chen(陈晶晶), Jia-Fan Chen(陈家凡), Xiao-Ming Dong(董晓鸣), Xiaodan Wang(王晓丹), Jun Huang(黄俊), Xiong-Hui Zeng(曾雄辉), and Ke Xu(徐科). Chin. Phys. B, 2023, 32(2): 026802.
[4] Review of a direct epitaxial approach to achieving micro-LEDs
Yuefei Cai(蔡月飞), Jie Bai(白洁), and Tao Wang(王涛). Chin. Phys. B, 2023, 32(1): 018508.
[5] Electroluminescence explored internal behavior of carriers in InGaAsP single-junction solar cell
Xue-Fei Li(李雪飞), Wen-Xian Yang(杨文献), Jun-Hua Long(龙军华), Ming Tan(谭明), Shan Jin(金山), Dong-Ying Wu(吴栋颖), Yuan-Yuan Wu(吴渊渊), and Shu-Long Lu(陆书龙). Chin. Phys. B, 2023, 32(1): 017801.
[6] High frequency doubling efficiency THz GaAs Schottky barrier diode based on inverted trapezoidal epitaxial cross-section structure
Xiaoyu Liu(刘晓宇), Yong Zhang(张勇), Haoran Wang(王皓冉), Haomiao Wei(魏浩淼),Jingtao Zhou(周静涛), Zhi Jin(金智), Yuehang Xu(徐跃杭), and Bo Yan(延波). Chin. Phys. B, 2023, 32(1): 017305.
[7] Selective formation of ultrathin PbSe on Ag(111)
Jing Wang(王静), Meysam Bagheri Tagani, Li Zhang(张力), Yu Xia(夏雨), Qilong Wu(吴奇龙), Bo Li(黎博), Qiwei Tian(田麒玮), Yuan Tian(田园), Long-Jing Yin(殷隆晶), Lijie Zhang(张利杰), and Zhihui Qin(秦志辉). Chin. Phys. B, 2022, 31(9): 096801.
[8] Effect of f-c hybridization on the $\gamma\to \alpha$ phase transition of cerium studied by lanthanum doping
Yong-Huan Wang(王永欢), Yun Zhang(张云), Yu Liu(刘瑜), Xiao Tan(谈笑), Ce Ma(马策), Yue-Chao Wang(王越超), Qiang Zhang(张强), Deng-Peng Yuan(袁登鹏), Dan Jian(简单), Jian Wu(吴健), Chao Lai(赖超), Xi-Yang Wang(王西洋), Xue-Bing Luo(罗学兵), Qiu-Yun Chen(陈秋云), Wei Feng(冯卫), Qin Liu(刘琴), Qun-Qing Hao(郝群庆), Yi Liu(刘毅), Shi-Yong Tan(谭世勇), Xie-Gang Zhu(朱燮刚), Hai-Feng Song(宋海峰), and Xin-Chun Lai(赖新春). Chin. Phys. B, 2022, 31(8): 087102.
[9] Photon-interactions with perovskite oxides
Hongbao Yao(姚洪宝), Er-Jia Guo(郭尔佳), Chen Ge(葛琛), Can Wang(王灿), Guozhen Yang(杨国桢), and Kuijuan Jin(金奎娟). Chin. Phys. B, 2022, 31(8): 088106.
[10] Dynamically tunable multiband plasmon-induced transparency effect based on graphene nanoribbon waveguide coupled with rectangle cavities system
Zi-Hao Zhu(朱子豪), Bo-Yun Wang(王波云), Xiang Yan(闫香), Yang Liu(刘洋), Qing-Dong Zeng(曾庆栋), Tao Wang(王涛), and Hua-Qing Yu(余华清). Chin. Phys. B, 2022, 31(8): 084210.
[11] Monolayer MoS2 of high mobility grown on SiO2 substrate by two-step chemical vapor deposition
Jia-Jun Ma(马佳俊), Kang Wu(吴康), Zhen-Yu Wang(王振宇), Rui-Song Ma(马瑞松), Li-Hong Bao(鲍丽宏), Qing Dai(戴庆), Jin-Dong Ren(任金东), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(8): 088105.
[12] Porous AlN films grown on C-face SiC by hydride vapor phase epitaxy
Jiafan Chen(陈家凡), Jun Huang(黄俊), Didi Li(李迪迪), and Ke Xu(徐科). Chin. Phys. B, 2022, 31(7): 076802.
[13] Experimental observation of pseudogap in a modulation-doped Mott insulator: Sn/Si(111)-(√30×√30)R30°
Yan-Ling Xiong(熊艳翎), Jia-Qi Guan(关佳其), Rui-Feng Wang(汪瑞峰), Can-Li Song(宋灿立), Xu-Cun Ma(马旭村), and Qi-Kun Xue(薛其坤). Chin. Phys. B, 2022, 31(6): 067401.
[14] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[15] Anomalous Hall effect of facing-target sputtered ferrimagnetic Mn4N epitaxial films with perpendicular magnetic anisotropy
Zeyu Zhang(张泽宇), Qiang Zhang(张强), and Wenbo Mi(米文博). Chin. Phys. B, 2022, 31(4): 047305.
No Suggested Reading articles found!