Anomalous Hall effect of facing-target sputtered ferrimagnetic Mn4N epitaxial films with perpendicular magnetic anisotropy
Zeyu Zhang(张泽宇)1, Qiang Zhang(张强)2, and Wenbo Mi(米文博)1,†
1 Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, School of Science, Tianjin University, Tianjin 300354, China; 2 Core Technology Platforms, New York University Abu Dhabi, P. O. Box 129188, Abu Dhabi, United Arab Emirates
Abstract Epitaxial MnN films with different thicknesses were fabricated by facing-target reactive sputtering and their anomalous Hall effect (AHE) is investigated systematically. The Hall resistivity shows a reversed magnetic hysteresis loop with the magnetic field. The magnitude of the anomalous Hall resistivity sharply decreases with decreasing temperature from 300 K to 150 K. The AHE scaling law in MnN films is influenced by the temperature-dependent magnetization, carrier concentration and interfacial scattering. Different scaling laws are used to distinguish the various contributions of AHE mechanisms. The scaling exponent for the conventional scaling in MnN films could be attributed to the residual resistivity . The longitudinal conductivity falls into the dirty regime. The scaling of is used to separate out the temperature-independent from extrinsic contribution. Moreover, the relationship between and is fitted by the proper scaling to clarify the contributions from extrinsic and intrinsic mechanisms of AHE, which demonstrates that the dominant mechanism of AHE in the MnN films can be ascribed to the competition between skew scattering, side jump and the intrinsic mechanisms.
(Scattering by phonons, magnons, and other nonlocalized excitations)
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 51871161 and 52071233).
Corresponding Authors:
Wenbo Mi
E-mail: miwenbo@tju.edu.cn
Cite this article:
Zeyu Zhang(张泽宇), Qiang Zhang(张强), and Wenbo Mi(米文博) Anomalous Hall effect of facing-target sputtered ferrimagnetic Mn4N epitaxial films with perpendicular magnetic anisotropy 2022 Chin. Phys. B 31 047305
[1] Khvalkovskiy V, Apalkov D, Watts S, Chepulskii R, Beach R S, Ong A, Tang X, Driskill-Smith A, Butler W H and Visscher P B 2013 J. Phys. D:Appl. Phys. 46 074001 [2] Jabeur K, Pendina G D, Bernard-Granger F and Prenat G 2014 IEEE Electron Device Lett. 35 408 [3] Prenat G, Jabeur K, Vanhauwaert P, Pendina G D, Oboril F, Bishnoi R, Ebrahimi M, Lamard N, Boulle O and Garello K 2016 IEEE Trans. Multi-Scale Comput. Syst. 2 49 [4] Chernyshov A, Overby M, Liu X, Furdyna J K, Lyanda-Geller Y and Rokhinson L P 2009 Nat. Phys. 5 656 [5] Wadley P, Howells B, Železný J, Andrews C, Hills V, Campion R P, Novák V, Olejník K, Maccherozzi F and Dhesi S 2016 Science351 587 [6] Mi W B, Guo Z B, Feng X P and Bai H L 2013 Acta Mater. 61 6387 [7] Meinert M 2016 J. Phys.:Condens. Matter28 056006 [8] Takei W J, Heikes R R and Shirane G 1962 Phys. Rev. 125 1893 [9] Takei W J and Shirane G 1960 Phys. Rev. 119 122 [10] Suzuki K, Yamaguchi Y, Kaneko T, Yoshida H, Obi Y, Fujimori H and Morita H 2001 J. Phys. Soc. Jpn. 70 1084 [11] Eddine M N and Bertaut E F 1977 Solid State Commun. 23 147 [12] Narahara A, Ito K, Suemasu T, Takahashi Y K, Ranajikanth and Hono K 2009 Appl. Phys. Lett. 94 202502 [13] Ito K, Okamoto K, Harada K, Sanai T, Toko K, Ueda S, Imai Y, Okuda T, Miyamoto K, Kimura A and Sumasu T 2012 J. Appl. Phys. 112 013911 [14] Yamada, K Oomaru K, Nakamura S, Sato T and Nakatani Y 2015 Appl. Phys. Lett. 106 042402 [15] Ching K M, Chang W D, Chin T S and Duh J G 1994 J. Appl. Phys. 76 6582 [16] Yasutomi Y, Ito K, Sanai T, Toko K and Suemasu T 2014 J. Appl. Phys. 115 17A935 [17] Gushi T, Vila L, Fruchart O, Marty A, Pizzini S, Vogel J, Takata F, Anzai A, Toko K, Suemasu T and Attané J P 2018 Jpn. J. Appl. Phys. 57 120310 [18] Gushi T, Klug M J, Garcia J P, Ghosh S, Attané J P, Okuno H, Fruchart O, Vogel J, Suemasu T, Pizzini S and Vila L 2019 Nano Lett. 19 8716 [19] Ghosh S, Komori T, Hallal A, Garcia J P, Gushi T, Hirose T, Mitarai H, Okuno H, Vogel J, Chshiev M, Attané J P, Vila L, Suemasu T and Pizzini S 2021 Nano Lett. 21 2580 [20] Nagaosa N, Sinova J, Onoda S, MacDonald A H and Ong N P 2010 Rev. Mod. Phys. 82 1539 [21] Dery H, Song Y, Li P and Zûtić I 2011 Appl. Phys. Lett. 99 082502 [22] Jansen R 2012 Nat. Mater. 11 400 [23] Inoue J and Ohno H 2005 Science309 2004 [24] Fert A 1973 J. Phys. F Met. Phys. 3 2126 [25] Berger L 1970 Phys. Rev. B2 4559 [26] Karplus R and Luttinger J M 1954 Phys. Rev. 95 1154 [27] Sangiao S, Morellon L, Simon G, Teresa J M D, Pardo J A, Arbio J and Ibarra M R 2009 Phys. Rev. B79 014431 [28] Fernández-Pacheco A, Teresa J M D, Orna J, Morellon L, Algarabel P A, Pardo J A and Ibarra M R 2008 Phys. Rev. B77 100403 [29] Li D, Hu P, Meng M, Li H, Wu S and Li S 2018 Mater. Res. Bull. 101 162 [30] Meng M, Wu S X, Ren L Z, Zhou W Q, Wang Y J, Wang G L and Li S W 2015 Appl. Phys. Lett. 106 032407 [31] Kabara K, Tsunoda M and Kokado S 2017 AIP Adv. 7 056416 [32] Shen X, Chikamatsu A, Shigematsu K, Hirose Y, Fukumura T and Hasegawa T 2014 Appl. Phys. Lett. 105 072410 [33] Mi W B, Guo L, Jiang E Y, Li Z Q, Wu P and Bai H L 2003 J. Phys. D:Appl. Phys. 36 2393 [34] Zhang Y, Mi W B, Wang X C and Zhang X X 2015 Phys. Chem. Chem. Phys. 17 15435 [35] Onoda S, Sugimoto N and Nagaosa N 2008 Phys. Rev. B77 165103 [36] Zhao K, Hajiri T, Chen H, Miki R, Asano H and Gegenwart P 2019 Phys. Rev. B100 045109 [37] Wang L, Feng Q, Lee H G, Ko E K, Lu Q and Noh T W 2020 Nano Lett. 20 2468 [38] Yasuda K, Wakatsuki R, Morimoto T, Yoshimi R, Tsukazaki A, Takahashi K S, Ezawa M, Kawasaki M, Nagaosa N and Tokura Y 2016 Nat. Phys. 12 555 [39] Liu N, Teng J and Li Y 2018 Nat. Commun. 9 1282 [40] Seemann K M, Mokrousov Y, Aziz A, Miguel J, Kronast F, Kuch W, Blamire M G, Hindmarch A T, Hickey B J, Souza I and Marrows C H 2010 Phys. Rev. Lett. 104 076402 [41] Kim T W and Gambino R J 2000 J. Appl. Phys. 87 1869 [42] Jin Y, Valloppilly S, Kharel P, Waybright J, Lukashev P, Li X Z and Sellmyer D J 2018 J. Appl. Phys. 124 103903 [43] Song S N, Sellers C and Ketterson J B 1991 Appl. Phys. Lett. 59 479 [44] Xiong P, Xiao G and Wang J Q 1992 Phys. Rev. Lett. 69 3220 [45] Guo Z B, Mi W B, Aboljadayel R O, Zhang B, Zhang Q, Barba P G, Manchon A and Zhang X X 2012 Phys. Rev. B86 104433 [46] Zhang Q, Li P, Wen Y, He X, Zhao Y L, Zhang J L and Zhang X X 2017 J. Phys. D:Appl. Phys. 50 235002 [47] Zhang Q, Wen Y, Zhao Y L, Li P, He X, Zhang J L, He Y, Peng Y, Yu R H and Zhang X X 2017 J. Phys.:Condens. Matter29 415802 [48] Lee W L, Watauchi S, Miller V L, Cava R J and Ong N P 2004 Science303 1647 [49] Tian Y, Ye L and Jin X 2009 Phys. Rev. Lett. 103 087206 [50] Hou D, Li Y, Wei D, Tian D, Wu L and Jin X 2012 J. Phys.:Condens. Matter24 482001 [51] Gerber A, Milner A, Finkler A, Karpovski M, Goldsmith L, Tuaillon-Combes J, Boisron O, Mélinon P and Perez A 2004 Phys. Rev. B69 224403 [52] Yue D and Jin X 2017 J. Phys. Soc. Jpn. 86 011006 [53] Fert A and Friederich A 1976 Phys. Rev. B13 397 [54] Smit J 1955 Physica21 877 [55] Smit J 1958 Physica24 39 [56] Zhang Q, Zheng D X, Wen Y, Zhao Y L, Mi W B, Manchon A, Boulle O and Zhang X X 2020 Phys. Rev. B101 134412
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.