Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(4): 049201    DOI: 10.1088/1674-1056/ac43a3

Characteristics of vapor based on complex networks in China

Ai-Xia Feng(冯爱霞)1, Qi-Guang Wang(王启光)2,†, Shi-Xuan Zhang(张世轩)3, Takeshi Enomoto(榎本刚)4, Zhi-Qiang Gong(龚志强)5, Ying-Ying Hu(胡莹莹)6, and Guo-Lin Feng(封国林)5
1 Data Service Office, National Meteorological Information Center CMA, Beijing 100081, China;
2 China Meteorological Administration Training Center, China Meteorological Administration, Beijing 100081, China;
3 Pacific Northwest National Laboratory, Richland WA 99352, USA;
4 Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto 611-0011, Japan;
5 Laboratory for Climate Studies, National Climate Center CMA, Beijing 100081, China;
6 Chinese Academy of Meteorological Sciences, Beijing 100081, China
Abstract  The uneven spatial distribution of stations providing precipitable water vapor (PWV) observations in China hinders the effective use of these data in assimilation, nowcasting, and prediction. In this study, we proposed a complex network framework for exploring the topological structure and the collective behavior of PWV in the mainland of China. We used the Pearson correlation coefficient and transfer entropy to measure the linear and nonlinear relationships of PWV amongst different stations and to set up the undirected and directed complex networks, respectively. Our findings revealed the statistical and geographical distribution of the variables influencing PWV networks and identified the vapor information source and sink stations. Specifically, the findings showed that the statistical and spatial distributions of the undirected and directed complex vapor networks in terms of degree and distance were similar to each other (the common interaction mode for vapor stations and their locations). The betweenness results displayed different features. The largest betweenness ratio for directed networks tended to be larger than that of the undirected networks, implying that the transfer of directed PWV networks was more efficient than that of the undirected networks. The findings of this study are heuristic and will be useful for constructing the best strategy for the PWV data in applications such as vapor observational networks design and precipitation prediction.
Keywords:  precipitable water vapor      complex networks      transfer entropy      nonlinear  
Received:  04 October 2021      Revised:  08 December 2021      Accepted manuscript online:  16 December 2021
PACS:  92.60.Jq (Water in the atmosphere)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 41775081, 41975100, 41901016, and 41875100), the Innovation Project of the China Meteorological Administration (Grant No. CXFZ2021Z034), and the National Key Research and Development Program of China (Grant No. 2018YFC1507702).
Corresponding Authors:  Qi-Guang Wang     E-mail:

Cite this article: 

Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林) Characteristics of vapor based on complex networks in China 2022 Chin. Phys. B 31 049201

[1] Kiehl J T and Trenberth K E 1997 Bull. Am. Meteorol. Soc. 78 197
[2] Vey S, Dietrich R, Fritsche M, Rülke A, Steigenberger P and Rothacher M 2009 J. Geophys. Res. Atmos. 114 D10
[3] Bevis M, Businger S, Chiswell S, Herring T A and Ware R H 1994 J. Appl. Meteor. 33 379
[4] Watts D J and Strogatz S H 1998 Nature 393 440
[5] Albert R and Barabasi A L 2002 Rev. Mod. Phys. 74 47
[6] Newman M E J 2003 SIAM Rev. 45 167
[7] Tsonis A A and Roebber P J 2004 Phys. A 333 497
[8] Tsonis A A, Swanson K L and Roebber P J 2006 Bull. Am. Meteorol. Soc. 87 585
[9] Tsonis A A, Swanson K L and Kravtsov S 2007 Geophys. Res. Lett. 34
[10] Tsonis A A, Swanson K L and Wang G L 2008a J. Clim. 21 2990
[11] Tsonis A A, Swanson K L and Wang G L 2008b Phys. A 387 5287
[12] Gozolchiani A, Yamasaki K, Gazit O and Havlin 2008 Europhys. Lett. 83 28005
[13] Tsonis A A and Swanson K L 2008 Phys. Rev. Lett. 100 228502
[14] Wang G L and Tsonis A A 2008 Geophys. Res. Lett. 35 L17702
[15] Wang G L and Tsonis A A 2009 Chin. Phys. B 18 5091
[16] Wang G L, Swanson K L and Tsonis A A 2009 Geophys. Res. Lett. 36 L07708
[17] Yamasaki K, Gozolchiani A and Havlin S 2008 Phys. Rev. Lett. 100 228501
[18] Donges J F, Zou Y, Marwan N and Kurths J 2009 Eur. Phys. J. Spec. Top. 174 157
[19] Donges J F, Zou Y, Marwan N and Kurths J 2009 Europhys. Lett. 87 48007
[20] Donges J F, Schultz H C H, Marwan N, Zou Y and Kurths J 2011 Eur. Phys. J. B 84 635
[21] Feng A X, Gong Z Q, Wang Q G and Feng G L 2012 Theor. Appl. Climatol. 109 635
[22] Boers N, Donner R V, Bookhagen B and Kurths J 2015 Clim. Dyn. 45 619
[23] Lu Z H, Yuan N M and Fu Z T 2016 Sci. Rep. 6 26779
[24] Sun X, Yu Y B, Yang Y T, Dong J Y, Christian B and Chen X E 2020 Chin. Phys. B 29 108901
[25] Malik N, Bookhagen B, Marwan N and Kurths J 2012 Clim. Dyn. 39 971
[26] Boers N, Bookhagen B, Marwan N, Kurths J and Marengo J A 2013 Geophys. Res. Lett. 40 4386
[27] Boers N, Bookhagen B, Barbosa H M J, Marwan N, Kurths J and Marengo J A 2014 Nat. Commun. 5 5199
[28] Vastano J A and Swinney H L 1988 Phys. Rev. Lett. 60 1773
[29] Schreiber T 2000 Phys. Rev. Lett. 85 461
[30] Abarbanel H D I, Masuda N, Rabinovich M I and Tumer E 2001 Phys. Lett. A 281 368
[31] Bhattacharya J, Hlavackova-Schindler K, Palus M and Vejmelka M 2007 Phys. Rep. 441 1
[32] Wilks D S 1995 Statistical Methods in the Atmospheric Science (New York:Academic Press) pp. 45-54
[1] All-optical switches based on three-soliton inelastic interaction and its application in optical communication systems
Shubin Wang(王树斌), Xin Zhang(张鑫), Guoli Ma(马国利), and Daiyin Zhu(朱岱寅). Chin. Phys. B, 2023, 32(3): 030506.
[2] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[3] Coupled-generalized nonlinear Schrödinger equations solved by adaptive step-size methods in interaction picture
Lei Chen(陈磊), Pan Li(李磐), He-Shan Liu(刘河山), Jin Yu(余锦), Chang-Jun Ke(柯常军), and Zi-Ren Luo(罗子人). Chin. Phys. B, 2023, 32(2): 024213.
[4] Quantitative analysis of soliton interactions based on the exact solutions of the nonlinear Schrödinger equation
Xuefeng Zhang(张雪峰), Tao Xu(许韬), Min Li(李敏), and Yue Meng(孟悦). Chin. Phys. B, 2023, 32(1): 010505.
[5] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[6] Nonlinear optical rectification of GaAs/Ga1-xAlxAs quantum dots with Hulthén plus Hellmann confining potential
Yi-Ming Duan(段一名) and Xue-Chao Li(李学超). Chin. Phys. B, 2023, 32(1): 017303.
[7] Deep-learning-based cryptanalysis of two types of nonlinear optical cryptosystems
Xiao-Gang Wang(汪小刚) and Hao-Yu Wei(魏浩宇). Chin. Phys. B, 2022, 31(9): 094202.
[8] Numerical investigation of the nonlinear spectral broadening aiming at a few-cycle regime for 10 ps level Nd-doped lasers
Xi-Hang Yang(杨西杭), Fen-Xiang Wu(吴分翔), Yi Xu(许毅), Jia-Bing Hu(胡家兵), Pei-Le Bai(白培乐), Hai-Dong Chen(陈海东), Xun Chen(陈洵), and Yu-Xin Leng(冷雨欣). Chin. Phys. B, 2022, 31(9): 094206.
[9] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[10] Influence of optical nonlinearity on combining efficiency in ultrashort pulse fiber laser coherent combining system
Yun-Chen Zhu(朱云晨), Ping-Xue Li(李平雪), Chuan-Fei Yao(姚传飞), Chun-Yong Li(李春勇),Wen-Hao Xiong(熊文豪), and Shun Li(李舜). Chin. Phys. B, 2022, 31(6): 064201.
[11] Collision enhanced hyper-damping in nonlinear elastic metamaterial
Miao Yu(于淼), Xin Fang(方鑫), Dianlong Yu(郁殿龙), Jihong Wen(温激鸿), and Li Cheng(成利). Chin. Phys. B, 2022, 31(6): 064303.
[12] Data-driven parity-time-symmetric vector rogue wave solutions of multi-component nonlinear Schrödinger equation
Li-Jun Chang(常莉君), Yi-Fan Mo(莫一凡), Li-Ming Ling(凌黎明), and De-Lu Zeng(曾德炉). Chin. Phys. B, 2022, 31(6): 060201.
[13] Role of the zonal flow in multi-scale multi-mode turbulence with small-scale shear flow in tokamak plasmas
Hui Li(李慧), Jiquan Li(李继全), Zhengxiong Wang(王正汹), Lai Wei(魏来), and Zhaoqing Hu(胡朝清). Chin. Phys. B, 2022, 31(6): 065207.
[14] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[15] All polarization-maintaining Er:fiber-based optical frequency comb for frequency comparison of optical clocks
Pan Zhang(张攀), Yan-Yan Zhang(张颜艳), Ming-Kun Li(李铭坤), Bing-Jie Rao(饶冰洁), Lu-Lu Yan(闫露露), Fa-Xi Chen(陈法喜), Xiao-Fei Zhang(张晓斐), Qun-Feng Chen(陈群峰), Hai-Feng Jiang(姜海峰), and Shou-Gang Zhang(张首刚). Chin. Phys. B, 2022, 31(5): 054210.
No Suggested Reading articles found!