Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(12): 127101    DOI: 10.1088/1674-1056/22/12/127101
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Defect-induced ferromagnetism in rutile TiO2:A first-principles study

Zhang Yong (张勇)a, Qi Yue-Ying (祁月盈)a, Hu Ya-Hua (胡亚华)a, Liang Pei (梁培)b
a College of Mathematics, Physics, and Information Engineering, Jiaxing University, Jiaxing 314001, China;
b College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China
Abstract  Based on first-principles calculations, the electronic and magnetic properties of undoped and Li-doped rutile TiO2 have been studied. The results demonstrate that a cation vacancy can arouse ferromagnetism in TiO2 and the magnetic moment mainly comes from p orbitals of O atoms around the Ti vacancy. However, the Ti vacancy under normal conditions is very difficult to form due to its high formation energy. Our calculations indicate that Li-doped TiO2 can reduce the formation energy while keeping the magnetism. The large magnetization energy indicates that Li-doped TiO2 is a promising room-temperature diluted magnetic semiconductor.
Keywords:  rutile TiO2      diluted magnetic semiconductors      first-principles calculation      electronic structure  
Received:  03 May 2013      Revised:  24 June 2013      Accepted manuscript online: 
PACS:  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
  71.20.Nr (Semiconductor compounds)  
  75.90.+w (Other topics in magnetic properties and materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11005049 and 61006051).
Corresponding Authors:  Zhang Yong     E-mail:  zhy10@hotmail.com

Cite this article: 

Zhang Yong (张勇), Qi Yue-Ying (祁月盈), Hu Ya-Hua (胡亚华), Liang Pei (梁培) Defect-induced ferromagnetism in rutile TiO2:A first-principles study 2013 Chin. Phys. B 22 127101

[1] Munekata H, Ohno H, von Molnar S and Segm A 1989 Phys. Rev. Lett. 63 1849
[2] Dong S and Zhu F 2012 Chin. Phys. B 21 097502
[3] Zeng Y Z and Huang M C 2004 Chin. Phys. Lett. 21 1632
[4] Matsumoto Y, Murakami M, Shono T, Hasegawa T, Fukumura T, Kawasaki M, Ahmet P, Chikyow T, Koshihara S and Koinuma H 2001 Science 291 854
[5] Akdogan N, Nefedov A, Zabel H, Westerholt K, Becker H W and Somsen C 2009 J. Phys. D: Appl. Phys. 42 115005
[6] Elfimov I S, Yunoki S and Sawatzky G A 2002 Phys. Rev. Lett. 89 216403
[7] Roul B, Rajpalke M K, Bhat T N, Kumar M, Kalghatgi A T, Krupanidhi S B, Kumar K and Sundaresan A 2011 Appl. Phys. Lett. 99 162512
[8] Ye L H, Freeman A J and Delley B 2006 Phys. Rev. B 73 033203
[9] Buchholz D B, Chang R P H, Song J H and Ketterson J B 2005 Appl. Phys. Lett. 87 082504
[10] Blaha P, Schwarz K, Madsen G K H, Kvasnicka D and Luitz J 2001 WIEN2K: An Augmented Plane Wave and Local Orbitals Program for Calculating Crystal Properties (Austria: Vienna University of Technology)
[11] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[12] Pen H, Li J, Li S S and Xia J B 2009 Phys. Rev. B 79 092411
[13] Lu J B, Dai Y, Guo M, Yu L, Lai K and Huang B 2012 Appl. Phys. Lett. 100 102114
[14] Tao J G, Guan L X, Pan J S, Huan C H A, Wang L, Kuo J L, Zhang Z, Chai J W and Wang S J 2009 Appl. Phys. Lett. 95 062505
[15] Jeremy K B, Timothy H, Gordon J M, James W R and Joseph V S 1987 J. Am. Chem. Soc. 109 3639
[16] Bai Y and Chen Q 2008 Phys. Stat. Sol. (RRL) 2 25
[17] Dev P, Xue Y and Zhang P 2008 Phys. Rev. Lett. 100 117204
[18] Zhang Y, Liu W and Niu H B 2008 Phys. Rev. B 77 035201
[19] Janisch R and Spaldin N A 2006 Phys. Rev. B 73 035201
[20] Ye L H and Freeman A J 2006 Phys. Rev. B 73 081304
[21] Du X, Li Q, Su H and Yang J 2006 Phys. Rev. B 74 233201
[1] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[2] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[3] First-principles study of the bandgap renormalization and optical property of β-LiGaO2
Dangqi Fang(方党旗). Chin. Phys. B, 2023, 32(4): 047101.
[4] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[5] High-temperature ferromagnetism and strong π-conjugation feature in two-dimensional manganese tetranitride
Ming Yan(闫明), Zhi-Yuan Xie(谢志远), and Miao Gao(高淼). Chin. Phys. B, 2023, 32(3): 037104.
[6] Rational design of Fe/Co-based diatomic catalysts for Li-S batteries by first-principles calculations
Xiaoya Zhang(张晓雅), Yingjie Cheng(程莹洁), Chunyu Zhao(赵春宇), Jingwan Gao(高敬莞), Dongxiao Kan(阚东晓), Yizhan Wang(王义展), Duo Qi(齐舵), and Yingjin Wei(魏英进). Chin. Phys. B, 2023, 32(3): 036803.
[7] Single-layer intrinsic 2H-phase LuX2 (X = Cl, Br, I) with large valley polarization and anomalous valley Hall effect
Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), Yuan-Shuo Liu(刘元硕), Shuai Fu(傅帅),Xiao-Ning Cui(崔晓宁), Yi-Hao Wang(王易昊), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(3): 037306.
[8] Li2NiSe2: A new-type intrinsic two-dimensional ferromagnetic semiconductor above 200 K
Li-Man Xiao(肖丽蔓), Huan-Cheng Yang(杨焕成), and Zhong-Yi Lu(卢仲毅). Chin. Phys. B, 2023, 32(3): 037501.
[9] First-principles prediction of quantum anomalous Hall effect in two-dimensional Co2Te lattice
Yuan-Shuo Liu(刘元硕), Hao Sun(孙浩), Chun-Sheng Hu(胡春生), Yun-Jing Wu(仵允京), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2023, 32(2): 027101.
[10] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[11] Bandgap evolution of Mg3N2 under pressure: Experimental and theoretical studies
Gang Wu(吴刚), Lu Wang(王璐), Kuo Bao(包括), Xianli Li(李贤丽), Sheng Wang(王升), and Chunhong Xu(徐春红). Chin. Phys. B, 2022, 31(6): 066205.
[12] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[13] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[14] Measurement of electronic structure in van der Waals ferromagnet Fe5-xGeTe2
Kui Huang(黄逵), Zhenxian Li(李政贤), Deping Guo(郭的坪), Haifeng Yang(杨海峰), Yiwei Li(李一苇),Aiji Liang(梁爱基), Fan Wu(吴凡), Lixuan Xu(徐丽璇), Lexian Yang(杨乐仙), Wei Ji(季威),Yanfeng Guo(郭艳峰), Yulin Chen(陈宇林), and Zhongkai Liu(柳仲楷). Chin. Phys. B, 2022, 31(5): 057404.
[15] First-principles calculations of the hole-induced depassivation of SiO2/Si interface defects
Zhuo-Cheng Hong(洪卓呈), Pei Yao(姚佩), Yang Liu(刘杨), and Xu Zuo(左旭). Chin. Phys. B, 2022, 31(5): 057101.
No Suggested Reading articles found!