Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 106105    DOI: 10.1088/1674-1056/22/10/106105
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Optical and magnetic properties of InFeP layers prepared by Fe+ implantation

Zhou Lin (周霖)a b, Shang Yan-Xia (尚艳霞)a b, Wang Ze-Song (王泽松)a, Zhang Rui (张瑞)a, Zhang Zao-Di (张早娣)a, Vasiliy O. Pelenovicha, Fu De-Jun (付德君)a, Kang Tae Wonb
a School of Physics and Technology, Wuhan University, Wuhan 430072, China;
b Quantum-Functional Semiconductor Research Center, Dongguk University, Seoul 100715, Korea
Abstract  InFeP layers are prepared by ion implantation of InP with 100-keV Fe+ ions to a dose of 5×1016 cm-2 and investigated by optical, magnetic, and ion beam analysis measurements. Photoluminescence measurements show a deep-level peak at 1.035 eV due to Fe in InP and two exciton-related luminescences at 1.426 eV and 1.376 eV in the implanted samples annealed at 400 ℃. Conversion electron Mossbauer spectroscopy reveals a doublet corresponding to Fe3+ ions in the indium sites. Atomic force microscopy and magnetic force microscopy show that magnetic clusters are formed in the annealing process. The magnetization-field hysteresis loops show ferromagnetic properties persisting up to room temperature with a coercive field of 100 Oe (1 Oe=79.5775 A·m-1), saturation magnetization of 4.35×10-5 emu, and remnant magnetization of 4.4×10-6 emu.
Keywords:  ion implantation      diluted magnetic semiconductor      photoluminescence      Rutherford backscattering/channeling  
Received:  14 March 2013      Revised:  22 April 2013      Accepted manuscript online: 
PACS:  61.72.U- (Doping and impurity implantation)  
  75.50.Pp (Magnetic semiconductors)  
  78.30.Fs (III-V and II-VI semiconductors)  
Fund: Project supported by the International Cooperation Program of the Ministry of Science and Technology, China (Grant No. 2011DFR50580) and the Fundamental Research Funds for the Central Universities, China (Grant No. 20102020101000022).
Corresponding Authors:  Fu De-Jun     E-mail:  djfu@whu.edu.cn

Cite this article: 

Zhou Lin (周霖), Shang Yan-Xia (尚艳霞), Wang Ze-Song (王泽松), Zhang Rui (张瑞), Zhang Zao-Di (张早娣), Vasiliy O. Pelenovich, Fu De-Jun (付德君), Kang Tae Won Optical and magnetic properties of InFeP layers prepared by Fe+ implantation 2013 Chin. Phys. B 22 106105

[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M, von Molnar S, Roukes M L, Chtchelkanova A Y and Treger D M 2001 Science 294 1488
[2] Furdyna J K 1998 J. Appl. Phys. 64 R29
[3] Schilfgaarde M V and Mryasov O N 2001 Phys. Rev. B 63 233205
[4] Yoshida H K and Sato K 2003 Physica B 327 337
[5] Sato K and Yoshida H K 2002 Semicond. Sci. Technol. 17 367
[6] Shon Y, Yuldashev S U and Fan X J 2001 Jpn. J. Appl. Phys., Part 1 40 3082
[7] Wu S Y, Liu H X and Gu L 2003 Appl. Phys. Lett. 82 3047
[8] Yang S G and Hung S T 2002 Appl. Phys. Lett. 81 2418
[9] Shon Y and Yuldashev S U 2002 Appl. Phys. Lett. 81 1845
[10] He J, Li M, Kim D H, Lee J C, Lee D J, Fu D J and Kang T W 2010 Chin. Phys. Lett. 27 078501
[11] Dong S and Zhu F 2012 Chin. Phys. B 21 097502
[12] Wakahara M, Uchida M, Warashina M, Oda O and Tajima M 2000 J. Crystal Growth 210 226
[13] Errnan M, Gillardin G, Le Bris J, Renaud M and Tomzig E 1989 SPIE 1144 78
[14] Malguth E, Hoffmann A and Phillips M R 2008 Phys. Stat. Sol. (b) 245 455
[15] Langer J M, Delerue C, Lannoo M and Heinrich H 1988 Phys. Rev. B 38 7723
[16] Cesca T, Gasparotto A, Mattei G, Rampazzo V, Boscherini F, Fraboni B, Priolo F, Ciatto G, Dacapito F and Bocchi C 2003 Phys. Rev. B 68 224113
[17] Bharuth-Ram K, Dlamini W B, Masenda H, Naidoo D, Gunnlaugsson H P, Weyer G, Mantovan R, Molholt T E, Sielemann R, Ólafsson S, Langouche G and Johnston K 2012 Nucl. Instrum. Method B 272 414
[18] Shon Y, Kwon Y H, Yuldashev S U, Leem J H, Park C S, Fu D J, Kim H J and Kang T W 2002 Appl. Phys. Lett. 81 1845
[1] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[2] Growth behaviors and emission properties of Co-deposited MAPbI3 ultrathin films on MoS2
Siwen You(游思雯), Ziyi Shao(邵子依), Xiao Guo(郭晓), Junjie Jiang(蒋俊杰), Jinxin Liu(刘金鑫), Kai Wang(王凯), Mingjun Li(李明君), Fangping Ouyang(欧阳方平), Chuyun Deng(邓楚芸), Fei Song(宋飞), Jiatao Sun(孙家涛), and Han Huang(黄寒). Chin. Phys. B, 2023, 32(1): 017901.
[3] Enhanced photoluminescence of monolayer MoS2 on stepped gold structure
Yu-Chun Liu(刘玉春), Xin Tan(谭欣), Tian-Ci Shen(沈天赐), and Fu-Xing Gu(谷付星). Chin. Phys. B, 2022, 31(8): 087803.
[4] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[5] Surface defects, stress evolution, and laser damage enhancement mechanism of fused silica under oxygen-enriched condition
Wei-Yuan Luo(罗韦媛), Wen-Feng Sun(孙文丰), Bo Li(黎波), Xia Xiang(向霞), Xiao-Long Jiang(蒋晓龙),Wei Liao(廖威), Hai-Jun Wang(王海军), Xiao-Dong Yuan(袁晓东),Xiao-Dong Jiang(蒋晓东), and Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2022, 31(5): 054214.
[6] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[7] Effect of different catalysts and growth temperature on the photoluminescence properties of zinc silicate nanostructures grown via vapor-liquid-solid method
Ghfoor Muhammad, Imran Murtaza, Rehan Abid, and Naeem Ahmad. Chin. Phys. B, 2022, 31(5): 057801.
[8] Surface chemical disorder and lattice strain of GaN implanted by 3-MeV Fe10+ ions
Jun-Yuan Yang(杨浚源), Zong-Kai Feng(冯棕楷), Ling Jiang(蒋领), Jie Song(宋杰), Xiao-Xun He(何晓珣), Li-Ming Chen(陈黎明), Qing Liao(廖庆), Jiao Wang(王姣), and Bing-Sheng Li(李炳生). Chin. Phys. B, 2022, 31(4): 046103.
[9] Differential nonlinear photocarrier radiometry for characterizing ultra-low energy boron implantation in silicon
Xiao-Ke Lei(雷晓轲), Bin-Cheng Li(李斌成), Qi-Ming Sun(孙启明), Jing Wang(王静), Chun-Ming Gao(高椿明), and Ya-Fei Wang(王亚非). Chin. Phys. B, 2022, 31(3): 038102.
[10] Optical properties of He+-implanted and diamond blade-diced terbium gallium garnet crystal planar and ridge waveguides
Jia-Li You(游佳丽), Yu-Song Wang(王雨松), Tong Wang(王彤), Li-Li Fu(付丽丽), Qing-Yang Yue(岳庆炀), Xiang-Fu Wang(王祥夫), Rui-Lin Zheng(郑锐林), and Chun-Xiao Liu(刘春晓). Chin. Phys. B, 2022, 31(11): 114203.
[11] Pressure- and temperature-dependent luminescence from Tm3+ ions doped in GdYTaO4
Peng-Yu Zhou(周鹏宇), Xiu-Ming Dou(窦秀明), Bao-Quan Sun(孙宝权), Ren-Qin Dou(窦仁琴), Qing-Li Zhang(张庆礼), Bao Liu(刘鲍), Pu-Geng Hou(侯朴赓), Kai-Lin Chi(迟凯粼), and Kun Ding(丁琨). Chin. Phys. B, 2022, 31(1): 017101.
[12] Magnetic polaron-related optical properties in Ni(II)-doped CdS nanobelts: Implication for spin nanophotonic devices
Fu-Jian Ge(葛付建), Hui Peng(彭辉), Ye Tian(田野), Xiao-Yue Fan(范晓跃), Shuai Zhang(张帅), Xian-Xin Wu(吴宪欣), Xin-Feng Liu(刘新风), and Bing-Suo Zou(邹炳锁). Chin. Phys. B, 2022, 31(1): 017802.
[13] Controllable preparation and disorder-dependent photoluminescence of morphologically different C60 microcrystals
Wen Cui(崔雯), De-Jun Li(李德军), Jin-Liang Guo(郭金良), Lang-Huan Zhao(赵琅嬛), Bing-Bing Liu(刘冰冰), and Shi-Shuai Sun(孙士帅). Chin. Phys. B, 2021, 30(8): 086101.
[14] Mechanism of defect evolution in H+ and He+ implanted InP
Ren-Jie Liu(刘仁杰), Jia-Jie Lin(林家杰), N Daghbouj, Jia-Liang Sun(孙嘉良), Tian-Gui You(游天桂), Peng Gao(高鹏), Nie-Feng Sun(孙聂枫), and Min Liao(廖敏). Chin. Phys. B, 2021, 30(8): 086104.
[15] Formation of nano-twinned 3C-SiC grains in Fe-implanted 6H-SiC after 1500-℃ annealing
Zheng Han(韩铮), Xu Wang(王旭), Jiao Wang(王娇), Qing Liao(廖庆), and Bingsheng Li(李炳生). Chin. Phys. B, 2021, 30(8): 086107.
No Suggested Reading articles found!