Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(10): 106106    DOI: 10.1088/1674-1056/22/10/106106
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effect of InxGa1-xN “continuously graded” buffer layer on InGaN epilayer grown by metalorganic chemical vapor deposition

Qian Wei-Ning (钱卫宁)a b, Su Shi-Chen (宿世臣)a, Chen Hong (陈弘)b, Ma Zi-Guang (马紫光)b, Zhu Ke-Bao (朱克宝)a, He Miao (何苗)a, Lu Ping-Yuan (卢平元)a, Wang Geng (王耿)a, Lu Tai-Ping (卢太平)b, Du Chun-Hua (杜春花)b, Wang Qiao (王巧)a, Wu Wen-Bo (吴汶波)a, Zhang Wei-Wei (张伟伟)a
a Laboratory of Nanophotonic Functional Materials and Devices, Institute of Opto-electronic Materials & Technology, South China Normal University, Guangzhou 510631, China;
b Key Laboratory for Renewable Energy, Chinese Academy of Sciences, Beijing Key Laboratory for New Energy Materials and Devices, Beijing National Laboratory for Condense Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  In this paper we report on the effect of an InxGa1-xN continuously graded buffer layer on an InGaN epilayer grown on a GaN template. In our experiment, three types of buffer layers including constant composition, continuously graded composition, and the combination of constant and continuously graded composition are used. Surface morphologies, crystalline quality, indium incorporations, and relaxation degrees of InGaN epilayers with different buffer layers are investigated. It is found that the InxGa1-xN continuously graded buffer layer is effective to improve the surface morphology, crystalline quality, and the indium incorporation of the InGaN epilayer. These superior characteristics of the continuously graded buffer layer can be attributed to the sufficient strain release and the reduction of dislocations.
Keywords:  InGaN      reciprocal space map      indium incorporation      surface morphology  
Received:  04 January 2013      Revised:  20 March 2013      Accepted manuscript online: 
PACS:  61.72.uj (III-V and II-VI semiconductors)  
  68.35.Dv (Composition, segregation; defects and impurities)  
  68.37.Ps (Atomic force microscopy (AFM))  
  78.60.Lc (Optically stimulated luminescence)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant Nos. 2011AA03A112, 2011AA03A106, and 2013AA03A101), the National Natural Science Foundation of China (Grant Nos. 11204360, 61210014, and 61078046), the Science & Technology Innovation Program of the Department of Education of Guangdong Province, China (Grant No. 2012CXZD0017), the Industry-Academia-Research Union Special Fund of Guangdong Province, China (Grant No. 2012B091000169), and the Science & Technology Innovation Platform of Industry-Academia-Research Union of Guangdong Province-Ministry Cooperation Special Fund, China (Grant No. 2012B090600038).
Corresponding Authors:  Chen Hong, He Miao     E-mail:  hchen@aphy.iphy.ac.cn;herofate@126.com

Cite this article: 

Qian Wei-Ning (钱卫宁), Su Shi-Chen (宿世臣), Chen Hong (陈弘), Ma Zi-Guang (马紫光), Zhu Ke-Bao (朱克宝), He Miao (何苗), Lu Ping-Yuan (卢平元), Wang Geng (王耿), Lu Tai-Ping (卢太平), Du Chun-Hua (杜春花), Wang Qiao (王巧), Wu Wen-Bo (吴汶波), Zhang Wei-Wei (张伟伟) Effect of InxGa1-xN “continuously graded” buffer layer on InGaN epilayer grown by metalorganic chemical vapor deposition 2013 Chin. Phys. B 22 106106

[1] Yang P F, Jian S R, Lai Y S, Yang C S and Chen R S 2008 J. Alloys Compd. 463 533
[2] Zhang D Y, Zheng X H, Li X F, Wu Y Y, Wang H, Wang J F and Yang H 2012 Chin. Phys. B 21 087802
[3] Kawaguchi Y, Shimizu M, Yamaguchi M, Hiramatsu K, Sawaki N, Taki W, Tsuda H, Kuwano N, Oki K, Zheleva T and Davis R F 1998 J. Crystal Growth 189 24
[4] Jiang Y, Luo Y, Xi G Y, Wang L, Li H T, Zhao W and Han Y J 2009 Acta Phys. Sin. 58 7282 (in Chinese)
[5] Legoues F K, Meyerson B S, Morar J F and Kirchner P D 1992 J. Appl. Phys. 71 4230
[6] Schlenker D, Miyamoto T, Chen Z, Koyama F and Iga K 1999 IEEE Photon. Technol. Lett. 11 946
[7] Takano Y, Hisaka M, Fujii N, Suzuki K, Kuwahara K and Fuke S 1998 Appl. Phys. Lett. 73 2917
[8] Zhao W, Wang L, Wang J X and Luo Y 2011 Chin. Phys. B 20 076101
[9] Niu N H, Wang H B, Liu J P, Liu N X, Xing Y H and Han J 2006 J. Crystal Growth 286 209
[10] Guo X, Wang H, Jiang D S, Wang Y T, Zhao D G, Zhu J J, Liu Z S, Zhang S M and Yang H 2012 Chin. Phys. B 21 068102
[11] Pereira S, Correia M R, Pereira E, O’Donnell K P, Alves E, Sequeira A D and Franco N 2001 Appl. Phys. Lett. 79 1432
[12] Detchprohm T, Hiramatsu K, Itoh K and Akasakic I 1992 Jpn. J. Appl. Phys. 2 31
[13] Kachkanov V, Dolbnya I P, O’Donnell K P, Martin R W, Edwards P R and Pereira S 2011 Appl. Phys. Lett. 99 1909
[14] Stringfellow G B 1972 J. Appl. Phys. 43 3455
[15] Ohta J, Ishikawa M, Ito R and Ogasawara N 1983 Jpn. J. Appl. Phys. 22 L136
[16] Allovon M, Primot J, Gao Y and Quillec M 1989 Electron J. Mater. 18 505
[17] Srinivasan S, Geng L, Liu R, Ponce F A, Narukawa Y and Tanaka S 2003 Appl. Phys. Lett. 83 5187
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[3] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[4] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[5] Lattice damage in InGaN induced by swift heavy ion irradiation
Ning Liu(刘宁), Li-Min Zhang(张利民), Xue-Ting Liu(刘雪婷), Shuo Zhang(张硕), Tie-Shan Wang(王铁山), and Hong-Xia Guo(郭红霞). Chin. Phys. B, 2022, 31(10): 106103.
[6] Efficiency droop in InGaN/GaN-based LEDs with a gradually varying In composition in each InGaN well layer
Shang-Da Qu(屈尚达), Ming-Sheng Xu(徐明升), Cheng-Xin Wang(王成新), Kai-Ju Shi(时凯居), Rui Li(李睿), Ye-Hui Wei(魏烨辉), Xian-Gang Xu(徐现刚), and Zi-Wu Ji(冀子武). Chin. Phys. B, 2022, 31(1): 017801.
[7] Fang-Howard wave function modelling of electron mobility in AlInGaN/AlN/InGaN/GaN double heterostructures
Yao Li(李姚) and Hong-Bin Pu(蒲红斌). Chin. Phys. B, 2021, 30(9): 097201.
[8] Vertical polarization-induced doping InN/InGaN heterojunction tunnel FET with hetero T-shaped gate
Yuan-Hao He(何元浩), Wei Mao(毛维), Ming Du(杜鸣), Zi-Ling Peng(彭紫玲), Hai-Yong Wang(王海永), Xue-Feng Zheng(郑雪峰), Chong Wang(王冲), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(5): 058501.
[9] A MOVPE method for improving InGaN growth quality by pre-introducing TMIn
Zi-Kun Cao(曹子坤), De-Gang Zhao(赵德刚), Jing Yang(杨静), Jian-Jun Zhu(朱建军), Feng Liang(梁锋), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2021, 30(1): 018103.
[10] Analysis of stress-induced inhomogeneous electroluminescence in GaN-based green LEDs grown on mesh-patterned Si (111) substrates with n-type AlGaN layer
Quan-Jiang Lv(吕全江), Yi-Hong Zhang(张一鸿), Chang-Da Zheng(郑畅达), Jiang-Dong Gao(高江东), Jian-Li Zhang(张建立), Jun-Lin Liu(刘军林). Chin. Phys. B, 2020, 29(8): 087801.
[11] Influence of N+ implantation on structure, morphology, and corrosion behavior of Al in NaCl solution
Hadi Savaloni, Rezvan Karami, Helma Sadat Bahari, Fateme Abdi. Chin. Phys. B, 2020, 29(5): 058102.
[12] Dependence of limited radiative recombination rate of InGaN-based light-emitting diode on lattice temperature with high injection
Jiang-Dong Gao(高江东), Jian-Li Zhang(张建立), Zhi-Jue Quan(全知觉), Jun-Lin Liu(刘军林), Feng-Yi Jiang(江风益). Chin. Phys. B, 2020, 29(4): 047802.
[13] Low-temperature plasma enhanced atomic layer deposition of large area HfS2 nanocrystal thin films
Ailing Chang(常爱玲), Yichen Mao(毛亦琛), Zhiwei Huang(黄志伟), Haiyang Hong(洪海洋), Jianfang Xu(徐剑芳), Wei Huang(黄巍), Songyan Chen(陈松岩), Cheng Li(李成). Chin. Phys. B, 2020, 29(3): 038102.
[14] Evaluation of polarization field in InGaN/GaN multiple quantum well structures by using electroluminescence spectra shift
Ping Chen(陈平), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Jing Yang(杨静), Jian-Jun Zhu(朱建军), Zong-Shun Liu(刘宗顺), Wei Liu(刘炜), Feng Liang(梁锋), Shuang-Tao Liu(刘双韬), Yao Xing(邢瑶), Li-Qun Zhang(张立群). Chin. Phys. B, 2020, 29(3): 034206.
[15] Photoluminescence of green InGaN/GaN MQWs grown on pre-wells
Shou-Qiang Lai(赖寿强), Qing-Xuan Li(李青璇), Hao Long(龙浩), Jin-Zhao Wu(吴瑾照), Lei-Ying Ying(应磊莹), Zhi-Wei Zheng(郑志威), Zhi-Ren Qiu(丘志仁), and Bao-Ping Zhang(张保平). Chin. Phys. B, 2020, 29(12): 127802.
No Suggested Reading articles found!