CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Optical conductivity of ABA-stacked trilayer graphene |
Zhu Guo-Bao (朱国宝), Zhang Peng (章鹏) |
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract In this paper, the optical conductivity of a trilayer graphene is studied using the Kubo-Greenwood formula. We calculate the real part of the diagonal optical conductivity of an ABA-stacked trilayer graphene with different Fermi energies. The optical conductivity arises from interband matrix elements of the electric current operator involving the transitions from the occupied states to the unoccupied ones. We study the dependence of the real part of the diagonal optical conductivity on the photon energy, and the role of the transitions.
|
Received: 03 August 2012
Revised: 24 September 2012
Accepted manuscript online:
|
PACS:
|
73.61.Wp
|
(Fullerenes and related materials)
|
|
78.67.-n
|
(Optical properties of low-dimensional, mesoscopic, and nanoscale materials and structures)
|
|
78.20.Ls
|
(Magneto-optical effects)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10934010) and the National Basic Research Program of China (Grant Nos. 2011CB921502 and 2012CB821305). |
Corresponding Authors:
Zhu Guo-Bao
E-mail: zhuguobao@gmail.com
|
Cite this article:
Zhu Guo-Bao (朱国宝), Zhang Peng (章鹏) Optical conductivity of ABA-stacked trilayer graphene 2013 Chin. Phys. B 22 017303
|
[1] |
Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science. 306 666
|
[2] |
Castro Neto A H, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
|
[3] |
Zhang L J and Xia T S 2010 Chin. Phys. B 19 117106
|
[4] |
Xu X G, Xu G J, Cao J C and Zhang C 2011 Chin. Phys. B 20 027201
|
[5] |
Lin X, Wang H L, Pan H and Xu H Z 2011 Chin. Phys. B 20 047302
|
[6] |
Wang T, Guo Q, Liu Y and Sheng K 2012 Chin. Phys. B 21 067301
|
[7] |
Luo T, Zhu W, Shi Q W and Wang X P 2008 Acta Phys. Sin. 57 3775 (in Chinese)
|
[8] |
Ouyang F P, Li M J, Xiao J, Xu H and Wang H Y 2008 Acta Phys. Sin. 57 7132 (in Chinese)
|
[9] |
Hu H X, Zhang Z H, Liu X H, Qiu M and Ding K H 2009 Acta Phys. Sin. 58 7156 (in Chinese)
|
[10] |
Jin Z F, Tong G P and Jiang Y J 2009 Acta Phys. Sin. 58 8537 (in Chinese)
|
[11] |
Taychatanapat T, Watanabe K, Taniguchi T and Jarillo-Herrero P 2011 Nat. Phys. 7 621
|
[12] |
Kumar A, EscoffierW, Poumirol J M, Faugeras C, Arovas D P, Fogler M M, Guinea F, Roche S, Goiran M and Raquet B 2011 Phys. Rev. Lett. 107 126806
|
[13] |
Lui C H, Li Z, Mak K F, Cappelluti E and Heinz T F 2011 Nat. Phys. 7 944
|
[14] |
Bao W, Jing L, Lee Y, Velasco Jr J, Kratz P, Tran D, Standley B, Aykol M, Cronin S B, Smirnov D, Koshino M, McCann E, Bockrath M and Lau C 2011 Nat. Phys. 7 948
|
[15] |
Zhang L, Zhang Y, Camacho J, Khodas M and Zaliznyak I A 2011 Nat. Phys. 7 953
|
[16] |
Stauber T, Peres N M R and Geim A K 2008 Phys. Rev. B 78 085432
|
[17] |
Ando T, Zheng Y and Suzuura H 2002 J. Phys. Soc. Jpn. 71 1318
|
[18] |
Gusynin V P, Sharapov S G and Carbotte J P 2006 Phys. Rev. Lett. 96 256802
|
[19] |
Peres N M R, Guinea F and Castro Neto A H 2006 Phys. Rev. B 73 125411
|
[20] |
Li Z Q, Henriksen E A, Jiang Z, Hao Z, Martin M C, Kim P, Stormer H L and Basov D N 2008 Nat. Phys. 4 532
|
[21] |
Nair R R, Blake P, Grigorenko A N, Novoselov K S, Booth T J Stauber T, Peres N M R and Geim A K 2008 Science. 320 1308
|
[22] |
Dong J M and Shu Z H 2003 Acta Phys. Sin. 52 2918 (in Chinese)
|
[23] |
Qiu S D, Hu C Z, Wang A J and Zhou X 2006 Acta Phys. Sin. 55 743 (in Chinese)
|
[24] |
Gusynin V P, Sharapov S G and Carbotte J P 2007 Phys. Rev. B 75 165407
|
[25] |
Ingenhoven P, Bernád J Z, Zülicke U and Egger R 2010 Phys. Rev. B 81 035421
|
[26] |
Nicol E J and Carbotte J P 2008 Phys. Rev. B 77 155409
|
[27] |
Tse W K and MacDonald A H 2009 Phys. Rev. B 80 195417
|
[28] |
Morimoto T, Avishai Y and Aoki H 2010 Phys. Rev. B 82 081404
|
[29] |
Yan J A, Ruan W Y and Chou M Y 2011 Phys. Rev. B 83 245418
|
[30] |
Guinea F, Castro Neto A H and Peres N M R 2006 Phys. Rev. B 73 245426
|
[31] |
Koshino M and McCann E 2009 Phys. Rev. B 79 125443
|
[32] |
Yuan S, Roldán R and Katsnelson M I 2011 Phys. Rev. B 84 125455
|
[33] |
Gelderen R, Lim L and Smith C M 2011 Phys. Rev. B 84 155446
|
[34] |
Sena S H R, Pereira Jr J M, Peeters F M and Farias G A 2011 Phys. Rev. B 84 205448
|
[35] |
Koshino M and Ando T 2007 Phys. Rev. B 76 085425
|
[36] |
Koshino M and Ando T 2008 Phys. Rev. B 77 115313
|
[37] |
Peres N M R, Guinea F and Castro Neto A H 2005 Phys. Rev. B 72 174406
|
[38] |
Nilsson J, Castro Neto A H, Peres N M R and Guinea F 2006 Phys. Rev. B 73 214418
|
[39] |
Mahan G D 2000 Many-Particle Physics (New York: Kluwer Academic/Plenum)
|
[40] |
Schachinger E and Carbotte J P 2011 Phys. Rev. B 84 134522
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|