Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(9): 098502    DOI: 10.1088/1674-1056/21/9/098502
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Microwave damage susceptibility trend of bipolar transistor as a function of frequency

Ma Zhen-Yang (马振洋), Chai Chang-Chun (柴常春), Ren Xing-Rong (任兴荣), Yang Yin-Tang (杨银堂), Chen Bin (陈斌), Song Kun (宋坤), Zhao Ying-Bo (赵颖博)
School of Microelectronics, Xidian University, Key Lab of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, Xi'an 710071, China
Abstract  We conduct a theoretical study of the damage susceptibility trend of a typical bipolar transistor induced by high-power microwave (HPM) as a function of frequency. The dependences of the burnout time and the damage power on the signal frequency are obtained. Studies of the internal damage process and the mechanism of the device are carried out from the variation analysis of the distribution of the electric field, current density, and temperature. The investigation shows that the burnout time linearly depends on the signal frequency. The current density and the electric field at the damage position decrease with increasing frequency. Meanwhile, the temperature elevation occurs in the area between the p-n junction and the n-n+ interface due to the increase of the electric field. Adopting the data analysis software, the relationship between the damage power and the frequency is obtained. Moreover, the thickness of the substrate has a significant effect on the burnout time.
Keywords:  bipolar transistor      high-power microwave      frequency  
Received:  04 March 2012      Revised:  05 April 2012      Accepted manuscript online: 
PACS:  85.30.Pq (Bipolar transistors)  
  84.40.-x (Radiowave and microwave (including millimeter wave) technology)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60776034).
Corresponding Authors:  Ma Zhen-Yang     E-mail:  zyma@mail.xidian.edu.cn

Cite this article: 

Ma Zhen-Yang (马振洋), Chai Chang-Chun (柴常春), Ren Xing-Rong (任兴荣), Yang Yin-Tang (杨银堂), Chen Bin (陈斌), Song Kun (宋坤), Zhao Ying-Bo (赵颖博) Microwave damage susceptibility trend of bipolar transistor as a function of frequency 2012 Chin. Phys. B 21 098502

[1] Ren Z, Yin W Y, Shi Y B and Liu Q H 2010 IEEE Trans. Electron Dev. 57 345
[2] Kim K and Iliadis A A 2010 Solid-State Electron. 54 18
[3] Iliadis A A and Kyechong K 2010 IEEE Trans. Dev. Mater. Reliab. 10 347
[4] Mansson D, Thottappillil R, Nilsson T, Lunden O and Backstrom M 2008 IEEE Trans. Electromagn. Compat. 50 434
[5] Kim K and Iliadis A A 2008 Solid-State Electron. 52 1589
[6] Chai C C, Xi X W, Ren X R, Yang Y T and Ma Z Y 2010 Acta Phys. Sin. 59 8118 (in Chinese)
[7] Backstrom M G and Lovstrand K G 2004 IEEE Trans. Electromagn. Compat. 46 396
[8] Nitsch D, Camp M, Sabath F, ter Haseborg J L and Garbe H 2004 IEEE Trans. Electromagn. Compat. 46 380
[9] Goransson G 1999 IEEE International Symposium on Electromagnetic Compatibility August 2-6, 1999 Seattle WA, USA, p. 543
[10] Hoad R, Carter N J, Herke D and Watkins S P 2004 IEEE Trans. Electromagn. Compat. 46 390
[11] Wang H, Li J, Li H, Xiao K and Chen H 2008 Prog. Electromagn. Res. 87 313
[12] Ma Z Y, Chai C C, Ren X R, Yang Y T and Chen B 2012 Acta Phys. Sin. 61 078501 (in Chinese)
[13] Liu Y and Zhang F H 2004 The Principle of Transistor (Beijing: National Defence Industry Press) p. 199 (in Chinese)
[14] ISE-TCAD Dessis Simulation User's Manual 2004 (Zurich: Integrated Systems Engineering Corp.) p. 208
[1] SiC gate-controlled bipolar field effect composite transistor with polysilicon region for improving on-state current
Baoxing Duan(段宝兴), Kaishun Luo(罗开顺), and Yintang Yang(杨银堂). Chin. Phys. B, 2023, 32(4): 047702.
[2] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[3] Precision measurement and suppression of low-frequency noise in a current source with double-resonance alignment magnetometers
Jintao Zheng(郑锦韬), Yang Zhang(张洋), Zaiyang Yu(鱼在洋), Zhiqiang Xiong(熊志强), Hui Luo(罗晖), and Zhiguo Wang(汪之国). Chin. Phys. B, 2023, 32(4): 040601.
[4] Transition frequencies between 2S and 2P states of lithium-like ions
Liming Wang(王黎明), Tongtong Liu(刘仝彤), Weiqing Yang(杨为青), and Zong-Chao Yan. Chin. Phys. B, 2023, 32(3): 033102.
[5] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[6] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[7] Ghost imaging based on the control of light source bandwidth
Zhao-Qi Liu(刘兆骐), Yan-Feng Bai(白艳锋), Xuan-Peng-Fan Zou(邹璇彭凡), Li-Yu Zhou(周立宇), Qin Fu(付芹), and Xi-Quan Fu(傅喜泉). Chin. Phys. B, 2023, 32(3): 034210.
[8] A band-pass frequency selective surface with polarization rotation
Bao-Qin Lin(林宝勤), Wen-Zhun Huang(黄文准), Jian-Xin Guo(郭建新), Zhe Liu(刘哲), Yan-Wen Wang(王衍文), and Hong-Jun Ye(叶红军). Chin. Phys. B, 2023, 32(2): 024204.
[9] Ignition dynamics of radio frequency discharge in atmospheric pressure cascade glow discharge
Ya-Rong Zhang(张亚容), Qian-Han Han(韩乾翰), Jun-Lin Fang(方骏林), Ying Guo(郭颖), and Jian-Jun Shi(石建军). Chin. Phys. B, 2023, 32(2): 025201.
[10] Enhancement of electron-positron pairs in combined potential wells with linear chirp frequency
Li Wang(王莉), Lie-Juan Li(李烈娟), Melike Mohamedsedik(麦丽开·麦提斯迪克), Rong An(安荣), Jing-Jing Li(李静静), Bo-Song Xie(谢柏松), and Feng-Shou Zhang(张丰收). Chin. Phys. B, 2023, 32(1): 010301.
[11] New designed helical resonator to improve measurement accuracy of magic radio frequency
Tian Guo(郭天), Peiliang Liu(刘培亮), and Chaohong Lee(李朝红). Chin. Phys. B, 2022, 31(9): 093201.
[12] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[13] Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors
Jianan Wei(魏佳男), Yang Li(李洋), Wenlong Liao(廖文龙), Fang Liu(刘方), Yonghong Li(李永宏), Jiancheng Liu(刘建成), Chaohui He(贺朝会), and Gang Guo(郭刚). Chin. Phys. B, 2022, 31(8): 086106.
[14] Numerical study of converting beat-note signals of dual-frequency lasers to optical frequency combs by optical injection locking of semiconductor lasers
Chenhao Liu(刘晨浩), Haoshu Jin(靳昊澍), Hui Liu(刘辉), and Jintao Bai(白晋涛). Chin. Phys. B, 2022, 31(8): 084205.
[15] Theoretical and experimental study of phase optimization of tapping mode atomic force microscope
Zheng Wei(魏征), An-Jie Peng(彭安杰), Feng-Jiao Bin(宾凤姣), Ya-Xin Chen(陈亚鑫), and Rui Guan(关睿). Chin. Phys. B, 2022, 31(7): 076801.
No Suggested Reading articles found!