CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES |
Prev
Next
|
|
|
Theoretical and experimental study of phase optimization of tapping mode atomic force microscope |
Zheng Wei(魏征)†, An-Jie Peng(彭安杰), Feng-Jiao Bin(宾凤姣), Ya-Xin Chen(陈亚鑫), and Rui Guan(关睿) |
College of Mechanical and Electrical Engineering, Beijing University of Chemical Technology, Beijing 100029, China |
|
|
Abstract Phase image in tapping-mode atomic force microscope (TM-AFM) results from various dissipations in a microcantilever system. The phases mainly reflect the tip-sample contact dissipations which allow the nanoscale characteristics to be distinguished from each other. In this work, two factors affecting the phase and phase contrast are analyzed. It is concluded from the theoretical and experimental results that the phases and phase contrasts in the TM-AFM are related to the excitation frequency and energy dissipation of the system. For a two-component blend, it is theoretically and experimentally proven that there exists an optimal excitation frequency for maximizing the phase contrast. Therefore, selecting the optimal excitation frequency can potentially improve the phase contrast results. In addition, only the key dissipation between the tip and sample is found to accurately reflect the sample properties. Meanwhile, the background dissipation can potentially reduce the contrasts of the phase images and even mask or distort the effective information in the phase images. In order to address the aforementioned issues, a self-excited method is adopted in this study in order to eliminate the effects of the background dissipation on the phases. Subsequently, the real phase information of the samples is successfully obtained. It is shown in this study that the eliminating of the background dissipation can effectively improve the phase contrast results and the real phase information of the samples is accurately reflected. These results are of great significance in optimizing the phases of two-component samples and multi-component samples in atomic force microscope.
|
Received: 15 December 2021
Revised: 05 January 2022
Accepted manuscript online: 12 January 2022
|
PACS:
|
68.37.Ps
|
(Atomic force microscopy (AFM))
|
|
43.40.Cw
|
(Vibrations of strings, rods, and beams)
|
|
46.40.Ff
|
(Resonance, damping, and dynamic stability)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11572031). |
Corresponding Authors:
Zheng Wei
E-mail: weizheng@mail.buct.edu.cn
|
Cite this article:
Zheng Wei(魏征), An-Jie Peng(彭安杰), Feng-Jiao Bin(宾凤姣), Ya-Xin Chen(陈亚鑫), and Rui Guan(关睿) Theoretical and experimental study of phase optimization of tapping mode atomic force microscope 2022 Chin. Phys. B 31 076801
|
[1] Binnig G, Quate C F and Gerber C 1986 Phys. Rev. Lett. 56 930 [2] García R and Pérez R 2002 Surf. Sci. Rep. 47 197 [3] Extance A 2018 Nature 555 545 [4] García R 2020 Chem. Soc. Rev. 49 5850 [5] Xiang W W K, Tian Y L and Liu X P 2020 Precis. Eng. 64 269 [6] Kodera N, Yamamoto D, Ishikawa R and Ando T 2010 Nature 468 72 [7] Dufrêne Y F, Ando T, García R, Alsteens D, Mar-tinez-Martin D, Engel A, Gerber C and Müller D J 2017 Nat. Nanotechnol. 12 295 [8] Wang D and Russell T P 2018 Macromolecules 51 3 [9] Stylianou A, Kontomaris S V, Grant C and Alexandratou E 2019 Scanning 2019 8452851 [10] Thundat T, Allison D P and Warmack R J 1994 Nucleic Acids Res 22 4224 [11] Möller C, Allen M, Elings V, Engel A and Müller D J 1999 Biophys. J. 77 1150 [12] Shiotari A and Sugimoto Y 2017 Nat. Commun. 8 14313 [13] Gan Y 2009 Surf. Sci. Rep. 64 99 [14] Zhang Y, Wang Y L, Que Y D and Gao H J 2015 Chin. Phys. B 24 078104 [15] Zi Y, Zhu J, Wang M K, Hu L P, Hu Y L, Wageh S, Al-Hartomy O A, Al-Ghamdi A, Huang W C and Zhang H 2021 Inorg. Chem. 60 18608 [16] Huang W C, Wang M M, Hu L P, Wang C, Xie Z J and Zhang H 2020 Adv. Funct. Mater. 30 2003301 [17] García R, Magerle R and Perez R 2007 Nat. Mater. 6 405 [18] Stark M, Mller C, Müller D J and Guckenberger R 2001 Biophys. J. 80 3009 [19] Noort S T, Werf K O D, Grooth B G D, Hulst N F V and Greve J 1997 Ultramicroscopy 69 117 [20] Gil A, Colchero J, Luna M, Gómez-Herrero J and Baró A M 2000 Langmuir 16 5086 [21] Tamayo J and García R 1997 Appl. Phys. Lett. 71 2394 [22] García R, Tamayo J and Paulo A S 1999 Surf. Interface Anal. 27 312 [23] Ehsanipour M, Damircheli M and Eslami B 2019 Microsc. Res. Tech. 82 1438 [24] Phani A, Jung H S and Kim S 2021 Commun. Phys. 4 72 [25] Brandsch R, Bar G and Whangbo M H 1997 Langmuir 13 6349 [26] Magonov S N, Elings V and Whangbo M H 1997 Surf. Sci. 375 385 [27] Fasolk M J, Mayes A M and Magonov S N 2001 Ultramicroscopy 90 21 [28] Zhao Y G, Cheng Q, Qian M and Cantrell J H 2010 J. Appl. Phys. 108 094311 [29] Cleveland J P, Anczykowski B, Schmid A E and Elings V B 1998 Appl. Phys. Lett. 72 2613 [30] Tamayo J 1999 Appl. Phys. Lett. 75 3569 [31] Payam A F, Ramos J R and García R 2012 Acs Nano 6 4663 [32] Vasiö B, Matkoviö A and Gajiö R 2017 Nanotechnology 28 465708 [33] Imboden M and Mohanty P 2014 Phys. Rep. 534 89 [34] Wei Z, Sun Y, Ding W X and Wang Z R 2016 Sci. China-Phys. Mech. Astron. 59 694611 [35] Hoffmann P M, Jeffery S, Pethica J B, özer H ö and Oral A 2001 Phys. Rev. Lett. 87 265502 [36] Anczykowski B, Gotsmann B, Fuchs H, Cleveland J P and Elings V B 1999 Appl. Surf. Sci. 140 376 [37] Schmid S and Hierold C 2008 J. Appl. Phys. 104 093516 [38] Schmid S, Jensen K D Nielsen K H and Boisen A 2011 Phys. Rev. B 84 165307 [39] Miller J M L, Ansari A, Heinz D B, Chen Y H, Flader I B, Shin D D, Villanueva L G and Kenny T W 2018 Appl. Phys. Rev. 5 041307 [40] Bao M and Yang H 2007 Sens. Actuator A Phys. 136 3 [41] Wei Z, Liu J, Zheng X T Sun Y and Wei R H 2020 J. Sound Vib. 491 115720 [42] Hao Z L, Erbil A and Ayazi F 2003 Sens. Actuator A Phys. 109 156 [43] Gaidarzhy A, Imboden M, Mohantya P, Rankin J and Sheldon B W 2007 Appl. Phys. Lett. 91 203503 [44] Zener C 1937 Phys. Rev. 52 230 [45] Lifshitz R and Roukes M L 2000 Phys. Rev. B 61 5600 [46] Salapaka M V, Chen D J and Cleveland J P 2000 Phys. Rev. B 61 1106 [47] Whangbo M H, Bar G and Brandsch R 1998 Surf. Sci. 411 794 [48] Blom F R, Bouwstra S, Elwenspoek M and Flu-itman J H J 1992 J. Vac. Sci. Technol. B 10 19 [49] Bar G, Brandsch R, Bruch M, Delineau L and Whangbo M H 2000 Surf. Sci. 444 11 [50] Ashman K M, Bird C M and Zepf S E 1994 Astron. J. 108 2348 [51] Forchheimer D, Forchheimer R, Haviland D B 2015 Nat. Commun. 6 6270 [52] Tan X F, Guo D and Luo J B 2022 Friction 10 478 [53] Tomás R, Rodrööguez and García R 2003 Appl. Phys. Lett. 82 4821 [54] Hölscher H and Schwarz U D 2006 Appl. Phys. Lett. 89 073117 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|