Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(1): 010301    DOI: 10.1088/1674-1056/ac744b
GENERAL Prev   Next  

Enhancement of electron-positron pairs in combined potential wells with linear chirp frequency

Li Wang(王莉)1,2, Lie-Juan Li(李烈娟)2, Melike Mohamedsedik(麦丽开·麦提斯迪克)2, Rong An(安荣)1,2, Jing-Jing Li(李静静)1,2, Bo-Song Xie(谢柏松)1,2,†, and Feng-Shou Zhang(张丰收)1,2,‡
1 Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China;
2 Key Laboratory of Beam Technology of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
Abstract  Effect of linear chirp frequency on the process of electron-positron pairs production from vacuum is investigated by the computational quantum field theory. With appropriate chirp parameters, the number of electrons created under combined potential wells can be increased by two or three times. In the low frequency region, frequency modulation excites interference effect and multiphoton processes, which promotes the generation of electron-positron pairs. In the high frequency region, high frequency suppression inhibits the generation of electron-positron pairs. In addition, for a single potential well, the number of created electron-positron pairs can be enhanced by several orders of magnitude in the low frequency region.
Keywords:  electron-positron pairs      linear chirp frequency      the computational quantum field theory  
Received:  03 March 2022      Revised:  19 May 2022      Accepted manuscript online:  29 May 2022
PACS:  03.65.Sq (Semiclassical theories and applications)  
  11.15.Kc (Classical and semiclassical techniques)  
  12.20.Ds (Specific calculations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11635003, 11025524, 11161130520, 11875007, and 12047513) and the Reform and Development Project of Beijing Academy of Science and Technology (Grant Nos. 13001-2110 and 13001-2114).
Corresponding Authors:  Bo-Song Xie, Feng-Shou Zhang     E-mail:;

Cite this article: 

Li Wang(王莉), Lie-Juan Li(李烈娟), Melike Mohamedsedik(麦丽开·麦提斯迪克), Rong An(安荣), Jing-Jing Li(李静静), Bo-Song Xie(谢柏松), and Feng-Shou Zhang(张丰收) Enhancement of electron-positron pairs in combined potential wells with linear chirp frequency 2023 Chin. Phys. B 32 010301

[1] Dirac P A M 1928 Proc. Roy. Soc. Lond. A 117 610
[2] Anderson C D 1933 Phys. Rev. 43 491
[3] Sauter F 1931 Z. Phys. 69 742
[4] Heisenberg W and Euler H 1936 Z. Phys. 98 714
[5] Schwinger J 1951 Phys. Rev. 82 664
[6] Tsai W Y and Yildiz A 1973 Phys. Rev. D 8 3446
[7] Baier V N, Katkov V M and Strakhovenko V M 1974 Sov. Phys. JETP 41 198
[8] Kim S P and Page D N 2002 Phys. Rev. D 65 105002
[9] Dunne G V and Schubert C 2005 Phys. Rev. D 72 105004
[10] Dunne G V, Wang Q H, Gies H and Schubert C 2006 Phys. Rev. D 73 065028
[11] Alkofer R, Hecht M B, Roberts C D, Schmidt S M and Vinnik D V 2001 Phys. Rev. Lett. 87 193902
[12] Roberts C D, Schmidt S M and Vinnik D V 2002 Phys. Rev. Lett. 89 153901
[13] Kluger Y, Mottola E and Eisenberg J M 1998 Phys. Rev. D 58 125015
[14] Hebenstreit F, Ilderton A, Marklund M and Zamanian J 2011 Phys. Rev. D 83 065007
[15] Aleksandrov I A and Kohlfürst C 2020 Phys. Rev. D 101 096009
[16] Kohlfürst C and Alkofer R 2018 Phys. Rev. D 97 036026
[17] Kohlfürst C 2020 Phys. Rev. D 101 096003
[18] Cheng T, Su Q and Grobe R 2009 Phys. Rev. A 80 013410
[19] Xie B S, Li Z L and Tang S 2017 Matter Radiat. Extrem. 2 225
[20] Lv Q Z, Dong S, Li Y T, Sheng Z M, Su Q and Grobe R 2018 Phys. Rev. A 97 022515
[21] Burke D L, Field R C, Smith G H, Spencer J E and Walz D 1997 Phys. Rev. Lett. 79 1626
[22] Li A, Yu J Q, Chen Y Q, Yan X Q and Grobe R 2020 Acta Phys. Sin. 69 019501 (in Chinese)
[23] Jiang M, Su W, Lu X, Sheng Z M, Li Y T, Li Y J, Zhang J, Grobe R and Su Q 2011 Phys. Rev. A 83 053402
[24] Lv Q Z, Li Y J, Grobe R and Su Q 2013 Phys. Rev. A 88 033403
[25] Liu Y, Lv Q Z, Li Y T, Grobe R and Su Q 2015 Phys. Rev. A 91 052123
[26] Jiang M, Su W, Lv Q Z, Lu X, Li Y T, Grobe R and Su Q 2012 Phys. Rev. A 85 033408
[27] Jiang M, Lv Q Z, Sheng Z M, Grobe R and Su Q 2013 Phys. Rev. A 87 042503
[28] Tang S, Xie B S, Lu D, Wang H Y, Fu L B and Liu J 2013 Phys. Rev. A 88 012106
[29] Hubbell J H 2006 Radiat. Phys. Chem. 75 614
[30] Schützhold R, Gies H and Dunne G 2008 Phys. Rev. Lett. 101 130404
[31] Orthaber M, Hebenstreit F and Alkofer R 2011 Phys. Lett. B 698 80
[32] Otto A, Seipt D, Blaschke D, Kämpfer B and Smolyansky S A 2015 Phys. Lett. B 740 335
[33] Otto A, Seipt D, Blaschke D, Smolyansky S A and Kämpfer B 2015 Phys. Rev. D 91 105018
[34] Linder M F, Schneider C, Sicking J, Szpak N and Schützhold R 2015 Phys. Rev. D 92 085009
[35] Schneider C and Schützhold R 2016 J. High Energy Phys. 2016 164
[36] Torgrimsson G, Schneider C, Oertel J and Schützhold R 2017 J. High Energy Phys. 2017 043
[37] Torgrimsson G, Schneider C and Schützhold R 2018 Phys. Rev. D 97 096004
[38] Sitiwaldi I and Xie B S 2018 Phys. Lett. B 777 406
[39] Gong C, Li Z L and Li Y J 2018 Phys. Rev. A 98 043424
[40] Wang L, Wu B and Xie B S 2019 Phys. Rev. A 100 022127
[41] Sawut A, Dulat S and Xie B S 2021 Phys. Scr. 96 055305
[42] Su D D, Li Y T, Lv Q Z and Zhang J 2020 Phys. Rev. D 101 054501
[43] Strickland D and Mourou G 1985 Opt. Commun. 56 219
[44] Dumlu C K 2010 Phys. Rev. D 82 045007
[45] Olugh O, Li Z L, Xie B S and Alkofer R 2019 Phys. Rev. D 99 036003
[46] Abdukerim N, Li Z L and Xie B S 2017 Chin. Phys. B 26 020301
[47] Gong C, Li Z L, Xie B S and Li Y J 2020 Phys. Rev. D 101 016008
[48] Li L J, Mohamedsedik M and Xie B S 2021 Phys. Rev. D 104 036015
[49] Mohamedsedik M, Li L J and Xie B S 2021 Phys. Rev. D 104 016009
[50] Bialynicki-Birula I and Bialynicka-Birula Z 2021 Phys. Rev. A 104 022203
[1] Chaotic state as an output of vacuum state evolving in diffusion channel and generation of displaced chaotic state for quantum controlling
Feng Chen(陈锋), Wei Xiong(熊伟), Bao-Long Fang(方保龙) , and Hong-Yi Fan(范洪义). Chin. Phys. B, 2020, 29(12): 124202.
[2] Experimental investigation of the fluctuations in nonchaotic scattering in microwave billiards
Runzu Zhang(张润祖), Weihua Zhang(张为华), Barbara Dietz, Guozhi Chai(柴国志), Liang Huang(黄亮). Chin. Phys. B, 2019, 28(10): 100502.
[3] Momentum-space crystal in narrow-line cooling of 87Sr
Jian-Xin Han(韩建新), Ben-Quan Lu(卢本全), Mo-Juan Yin(尹默娟), Ye-Bing Wang(王叶兵), Qin-Fang Xu(徐琴芳), Xiao-Tong Lu(卢晓同), Hong Chang(常宏). Chin. Phys. B, 2019, 28(1): 013701.
[4] Analysis of the fractal intrinsic quality in the ionization of Rydberg helium and lithium atoms
Yanhui Zhang(张延惠), Xiulan Xu(徐秀兰), Lisha Kang(康丽莎), Xiangji Cai(蔡祥吉), Xu Tang(唐旭). Chin. Phys. B, 2018, 27(5): 053401.
[5] Investigation of three-pulse photon echo in thick crystal using finite-difference time-domain method
Xiu-Rong Ma(马秀荣), Lin Xu(徐林), Shi-Yuan Chang(常世元), Shuang-Gen Zhang(张双根). Chin. Phys. B, 2017, 26(4): 044201.
[6] Fractal dynamics in the ionization of helium Rydberg atoms
Xiulan Xu(徐秀兰), Yanhui Zhang(张延惠), Xiangji Cai(蔡祥吉), Guopeng Zhao(赵国鹏), Lisha Kang(康丽莎). Chin. Phys. B, 2016, 25(11): 110301.
[7] Testing the validity of the Ehrenfest theorem beyond simple static systems: Caldirola-Kanai oscillator driven by a time-dependent force
Salim Medjber, Hacene Bekkar, Salah Menouar, Jeong Ryeol Choi. Chin. Phys. B, 2016, 25(8): 080301.
[8] Improving the intensity and efficiency of compressed echo in rare-earth-ion-doped crystal
Xiu-Rong Ma(马秀荣), Yu-Qing Liang(梁裕卿), Song Wang(王松), Shuang-Gen Zhang(张双根), Yun-Long Shan(单云龙). Chin. Phys. B, 2016, 25(7): 070302.
[9] Photoionization microscopy of Rydberg hydrogen atom in a non-uniform electrical field
Shao-Hao Cheng(程绍昊), De-Hua Wang(王德华), Zhao-Hang Chen(陈召杭), Qiang Chen(陈强). Chin. Phys. B, 2016, 25(6): 063201.
[10] Quantum and semiclassical studies on photodetachment cross sections of H- in a harmonic potential
Hai-Jun Zhao(赵海军), Wei-Long Liu(刘伟龙), Meng-Li Du(杜孟利). Chin. Phys. B, 2016, 25(3): 033203.
[11] Spin dynamics of the potassium magnetometer in spin-exchange relaxation free regime
Ji-Qing Fu(伏吉庆), Peng-Cheng Du(杜鹏程), Qing Zhou(周庆), Ru-Quan Wang(王如泉). Chin. Phys. B, 2016, 25(1): 010302.
[12] Photodetachment of H- near a hard wall with arbitrary laser polarization direction
Azmat Iqbal, A. Afaq. Chin. Phys. B, 2015, 24(8): 083201.
[13] Photodetachment microscopy of H- in the magnetic field near different dielectric surfaces
Tang Tian-Tian (唐田田), Zhang Min (张敏), Zhang Chao-Min (张朝民). Chin. Phys. B, 2015, 24(6): 063401.
[14] Realization of quantum Fourier transform over ZN
Fu Xiang-Qun (付向群), Bao Wan-Su (鲍皖苏), Li Fa-Da (李发达), Zhang Yu-Chao (张宇超). Chin. Phys. B, 2014, 23(2): 020306.
[15] The dynamics of three coupled dipolar Bose–Einstein condensates
Wu Jian-Hua (武建华), Xu Sheng-Nan (许胜男). Chin. Phys. B, 2013, 22(12): 120304.
No Suggested Reading articles found!