Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 078502    DOI: 10.1088/1674-1056/21/7/078502
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

A new analytical model for the surface electric field distribution and breakdown voltage of the SOI trench LDMOS

Hu Xia-Rong(胡夏融), Zhang Bo(张波), Luo Xiao-Rong(罗小蓉), Wang Yuan-Gang(王元刚), Lei Tian-Fei(雷天飞), and Li Zhao-Ji(李肇基)
State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
Abstract  A new analytical model for the surface electric field distribution and breakdown voltage of the silicon on insulator (SOI) trench lateral double-diffused metal-oxide-semiconductor (LDMOS) is presented. Based on the two-dimensional Laplace solution and Poisson solution, the model considers the influence of structure parameters, such as the doping concentration of the drift region and the depth and width of the trench, on the surface electric field. Further, a simple analytical expression of the breakdown voltage is obtained, which offers an effective way to gain an optimal high voltage. All analytical results are in good agreement with the simulation results.
Keywords:  silicon on insulator (SOI)      trench      lateral double-diffused metal-oxide-semiconductor (LDMOS)      breakdown voltage  
Received:  01 December 2011      Revised:  27 December 2011      Accepted manuscript online: 
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.30.Tv (Field effect devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61176069 and 60976060) and the National Key Laboratory of Analogue Integrated Circuit, China (Grant No. 9140C090304110C0905).
Corresponding Authors:  Hu Xia-Rong     E-mail:  h1_x2_r3@126.com

Cite this article: 

Hu Xia-Rong(胡夏融), Zhang Bo(张波), Luo Xiao-Rong(罗小蓉), Wang Yuan-Gang(王元刚), Lei Tian-Fei(雷天飞), and Li Zhao-Ji(李肇基) A new analytical model for the surface electric field distribution and breakdown voltage of the SOI trench LDMOS 2012 Chin. Phys. B 21 078502

[1] Nakagawa A, Yasuhara N and Baba Y 1991 IEEE Trans. Electron. Dev. 38 1650
[2] Wang Y G, Luo X R, Ge R, Wu L J, Chen X, Yao G L, Lei T F, Wang Q, Fan J and Hu X R 2011 Chin. Phys. B 20 077304
[3] Wu L J, Hu S D, Zhang B and Li Z J 2011 Chin. Phys. B 20 027101
[4] Luo X R, Zhang B and Li Z J 2007 Solid-State Electron. 51 493
[5] Hu X R, Zhang B, Luo X R and Li Z J 2012 Solid-State Electron. 69 89
[6] Zhang B, Li Z J, Hu S D and Luo X R 2009 IEEE Trans. Electron. Dev. 56 2327
[7] Fujishima N, Sugi A, Andre C and Salama T 2002 IEEE Trans. Electron. Dev. 49 1462
[8] Sona W S, Sohnb Y H and Choia S J 2004 Microelectron. J. 35 393
[9] Varadarajan K R, Chow T P andWang J 2007 Proc. IEEE ISPSD 233 233
[10] Luo X R, Fan J, Wang Y G, Lei T F, Qiao M, Zhang B and Udrea F 2011 IEEE Electron. Dev. Lett. 32 185
[11] Luo X R, Yao G L, Chen X, Wang Q, Ge R and Rlorin U 2011 Chin. Phys. B 20 028501
[12] Zitouni M, Morancho F, Rossel P, Tranduc H, Buxo J and Pages I 1999 Proc. IEEE ISPSD 73 73
[13] Theolier L, Mahfoz-Kotb H, Isoird K, Morancho F, Assie- Souleille S, and Mauran N 2009 IEEE Electron. Dev. Lett. 30 687
[14] Mahfoz-Kotb H, Theolier L, Morancho F, Isoird K, Dubreuil P, Do Conto T 2008 IEEE ISPSD 303 303
[15] Krizj D, Charitat G and Amon S 1996 Solid-State Elec- tron. 39 1353
[16] Chung S K 2000 IEEE Trans. Electron. Dev. 47 1006
[17] Hua T T, Guo Y F and Gene S 2010 IEEE ICSICT 1850 1850
[18] Guo Y F, Li Z J and Zhang B 2006 Microelectron. J. 37 861
[1] High performance carrier stored trench bipolar transistor with dual shielding structure
Jin-Ping Zhang(张金平), Hao-Nan Deng(邓浩楠), Rong-Rong Zhu(朱镕镕), Ze-Hong Li(李泽宏), and Bo Zhang(张波). Chin. Phys. B, 2023, 32(3): 038501.
[2] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[3] Degradation and breakdown behaviors of SGTs under repetitive unclamped inductive switching avalanche stress
Chenkai Zhu(朱晨凯), Linna Zhao(赵琳娜), Zhuo Yang(杨卓), and Xiaofeng Gu(顾晓峰). Chin. Phys. B, 2022, 31(9): 097303.
[4] Improvement on short-circuit ability of SiC super-junction MOSFET with partially widened pillar structure
Xinxin Zuo(左欣欣), Jiang Lu(陆江), Xiaoli Tian(田晓丽), Yun Bai(白云), Guodong Cheng(成国栋), Hong Chen(陈宏), Yidan Tang(汤益丹), Chengyue Yang(杨成樾), and Xinyu Liu(刘新宇). Chin. Phys. B, 2022, 31(9): 098502.
[5] A 4H-SiC trench MOSFET structure with wrap N-type pillar for low oxide field and enhanced switching performance
Pei Shen(沈培), Ying Wang(王颖), and Fei Cao(曹菲). Chin. Phys. B, 2022, 31(7): 078501.
[6] Fast-switching SOI-LIGBT with compound dielectric buried layer and assistant-depletion trench
Chunzao Wang(王春早), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2022, 31(4): 047304.
[7] Lateral β-Ga2O3 Schottky barrier diode fabricated on (-201) single crystal substrate and its temperature-dependent current-voltage characteristics
Pei-Pei Ma(马培培), Jun Zheng(郑军), Ya-Bao Zhang(张亚宝), Xiang-Quan Liu(刘香全), Zhi Liu(刘智), Yu-Hua Zuo(左玉华), Chun-Lai Xue(薛春来), and Bu-Wen Cheng(成步文). Chin. Phys. B, 2022, 31(4): 047302.
[8] Impact of STI indium implantation on reliability of gate oxide
Xiao-Liang Chen(陈晓亮), Tian Chen(陈天), Wei-Feng Sun(孙伟锋), Zhong-Jian Qian(钱忠健), Yu-Dai Li(李玉岱), and Xing-Cheng Jin(金兴成). Chin. Phys. B, 2022, 31(2): 028505.
[9] Modeling of high permittivity insulator structure with interface charge by charge compensation
Zhi-Gang Wang(汪志刚), Yun-Feng Gong(龚云峰), and Zhuang Liu(刘壮). Chin. Phys. B, 2022, 31(2): 028501.
[10] Terminal-optimized 700-V LDMOS with improved breakdown voltage and ESD robustness
Jie Xu(许杰), Nai-Long He(何乃龙), Hai-Lian Liang(梁海莲), Sen Zhang(张森), Yu-De Jiang(姜玉德), and Xiao-Feng Gu(顾晓峰). Chin. Phys. B, 2021, 30(6): 067303.
[11] Design and simulation of AlN-based vertical Schottky barrier diodes
Chun-Xu Su(苏春旭), Wei Wen(温暐), Wu-Xiong Fei(费武雄), Wei Mao(毛维), Jia-Jie Chen(陈佳杰), Wei-Hang Zhang(张苇杭), Sheng-Lei Zhao(赵胜雷), Jin-Cheng Zhang(张进成), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(6): 067305.
[12] A super-junction SOI-LDMOS with low resistance electron channel
Wei-Zhong Chen(陈伟中), Yuan-Xi Huang(黄元熙), Yao Huang(黄垚), Yi Huang(黄义), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2021, 30(5): 057303.
[13] Improved 4H-SiC UMOSFET with super-junction shield region
Pei Shen(沈培), Ying Wang(王颖), Xing-Ji Li(李兴冀), Jian-Qun Yang(杨剑群), Cheng-Hao Yu(于成浩), and Fei Cao(曹菲). Chin. Phys. B, 2021, 30(5): 058502.
[14] Novel Si/SiC heterojunction lateral double-diffused metal-oxide semiconductor field-effect transistor with p-type buried layer breaking silicon limit
Baoxing Duan(段宝兴), Xin Huang(黄鑫), Haitao Song (宋海涛), Yandong Wang(王彦东), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(4): 048503.
[15] Novel fast-switching LIGBT with P-buried layer and partial SOI
Haoran Wang(王浩然), Baoxing Duan(段宝兴), Licheng Sun(孙李诚), and Yintang Yang(杨银堂). Chin. Phys. B, 2021, 30(2): 027302.
No Suggested Reading articles found!