Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 066102    DOI: 10.1088/1674-1056/21/6/066102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

The crystal structures and physical properties of the solid solution compound Ba5Y8-xMn4O21-1.5x (x=0, 1)

Gao Qing-Qing(高庆庆), Li Jing-Bo(李静波), Song Shi-Jia(宋士佳), Rao Guang-Hui(饶光辉), Luo Jun(骆军), Liu GuangYao(刘广耀), and Liang Jing-Kui(梁敬魁)
Beijing National Laboratory for Condensed Matter Physics, Institute of Physics,Chinese Academy of Sciences, Beijing 100190, China
Abstract  New oxometallides with the formula Ba5Y8-xMn4O21-1.5x (x=0, 1) are prepared through an atmosphere-controlled solid-state reaction. Two single-phase samples with Ba/Y/Mn atomic ratios 5/8/4 (Y8) and 5/7/4 (Y7) are obtained. The crystal structures and the physical properties of the compounds are investigated by X-ray powder diffraction, magnetization, conductivity, and dielectricity measurements. The Ba5Y8-xMn4O21-1.5x compound is demonstrated to be a Y-deficient solid solution. The solid solution compound Ba5Y8-xMn4O21-1.5x crystallizes into tetragonal symmetry with the space group I4/m. Detailed structure analysis by Rietveld refinement of the X-ray powder diffraction data reveals that the Y vacancies occur preferentially at the Y(2) site. Thermal magnetization measurements indicate the presence of antiferromagnetic interaction between Mn ions in the compounds, and temperature-dependent resistivity measurements show that insulator-semiconductor transitions occur around 175 K and 170 K for the Y8 and Y7 samples, respectively. Strong frequency dependences of the dielectric constant are observed above ~ 175 K for the two compounds.
Keywords:  Ba5Y8-xMn4O21-1.5x      X-ray powder diffraction      crystal structure      conductivity  
Received:  21 December 2011      Revised:  09 February 2012      Accepted manuscript online: 
PACS:  61.05.cp (X-ray diffraction)  
  91.60.Ed (Crystal structure and defects, microstructure)  
  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50872148 and 51072225) and the National Basic Research Program of China (Grant No. 2007CB925003).
Corresponding Authors:  Li Jing-Bo, Liang Jing-Kui     E-mail:  jbli@iphy.ac.cn; jkliang@iphy.ac.cn

Cite this article: 

Gao Qing-Qing(高庆庆), Li Jing-Bo(李静波), Song Shi-Jia(宋士佳), Rao Guang-Hui(饶光辉), Luo Jun(骆军), Liu GuangYao(刘广耀), and Liang Jing-Kui(梁敬魁) The crystal structures and physical properties of the solid solution compound Ba5Y8-xMn4O21-1.5x (x=0, 1) 2012 Chin. Phys. B 21 066102

[1] Rao C N R and Raveau B 1998 Colossal Magnetoresistance, Charge Ordering and Related Properties of Manganese Oxides (Singapore: World Scientific)
[2] Narlikar A V (ed.) 2005 Frontiers in Magnetic Materials (Berlin: Springer)
[3] Fiebig M 2005 J. Phys. D: Appl. Phys. 38 R123
[4] Muller-Buschbaum H K and Kluver E 1992 Z. Anorg. Allg. Chem. 612 21
[5] Muller-Buschbaum H K and Rabbow CH 1992 J. Alloys Compd. 190 L27
[6] Kluver E, Peters E and Muller-Buschbaum H K 1992 J. Alloys Compd. 189 101
[7] Rodriguez-Carvajal J 1993 Physica B 192 55
[8] Shannon R D and Prewitt C T 1969 Acta Cryst. B 25 925
[9] Shannonn R D 1976 Acta Cryst. A 32 751
[10] Arrhenius S 1889 Z. Phys. Chem. 4 226
[11] Bardeen J and Shockley W 1950 Phys. Rev. 80 72
[12] Jonscher A K 1983 Thin Solid Films 100 329
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Enhanced topological superconductivity in an asymmetrical planar Josephson junction
Erhu Zhang(张二虎) and Yu Zhang(张钰). Chin. Phys. B, 2023, 32(4): 040307.
[5] Superconductivity in epitaxially grown LaVO3/KTaO3(111) heterostructures
Yuan Liu(刘源), Zhongran Liu(刘中然), Meng Zhang(张蒙), Yanqiu Sun(孙艳秋), He Tian(田鹤), and Yanwu Xie(谢燕武). Chin. Phys. B, 2023, 32(3): 037305.
[6] A new transition metal diphosphide α-MoP2 synthesized by a high-temperature and high-pressure technique
Xiaolei Liu(刘晓磊), Zhenhai Yu(于振海), Jianfu Li(李建福), Zhenzhen Xu(徐真真), Chunyin Zhou(周春银), Zhaohui Dong(董朝辉), Lili Zhang(张丽丽), Xia Wang(王霞), Na Yu(余娜), Zhiqiang Zou(邹志强),Xiaoli Wang(王晓丽), and Yanfeng Guo(郭艳峰). Chin. Phys. B, 2023, 32(1): 018102.
[7] Site selective 5f electronic correlations in β-uranium
Ruizhi Qiu(邱睿智), Liuhua Xie(谢刘桦), and Li Huang(黄理). Chin. Phys. B, 2023, 32(1): 017101.
[8] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[9] Superconducting properties of the C15-type Laves phase ZrIr2 with an Ir-based kagome lattice
Qing-Song Yang(杨清松), Bin-Bin Ruan(阮彬彬), Meng-Hu Zhou(周孟虎), Ya-Dong Gu(谷亚东), Ming-Wei Ma(马明伟), Gen-Fu Chen(陈根富), and Zhi-An Ren(任治安). Chin. Phys. B, 2023, 32(1): 017402.
[10] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[11] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[12] Evolution of electrical conductivity and semiconductor to metal transition of iron oxides at extreme conditions
Yukai Zhuang(庄毓凯) and Qingyang Hu(胡清扬). Chin. Phys. B, 2022, 31(8): 089101.
[13] Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4
Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰). Chin. Phys. B, 2022, 31(8): 087505.
[14] Structural evolution and molecular dissociation of H2S under high pressures
Wen-Ji Shen(沈文吉), Tian-Xiao Liang(梁天笑), Zhao Liu(刘召), Xin Wang(王鑫), De-Fang Duan(段德芳), Hong-Yu Yu(于洪雨), and Tian Cui(崔田). Chin. Phys. B, 2022, 31(7): 076102.
[15] High-pressure study of topological semimetals XCd2Sb2 (X = Eu and Yb)
Chuchu Zhu(朱楚楚), Hao Su(苏豪), Erjian Cheng(程二建), Lin Guo(郭琳), Binglin Pan(泮炳霖), Yeyu Huang(黄烨煜), Jiamin Ni(倪佳敏), Yanfeng Guo(郭艳峰), Xiaofan Yang(杨小帆), and Shiyan Li(李世燕). Chin. Phys. B, 2022, 31(7): 076201.
No Suggested Reading articles found!