Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(8): 087505    DOI: 10.1088/1674-1056/ac5e97
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4

Liguo Chu(褚利国)1, Shuangkui Guang(光双魁)1, Haidong Zhou(周海东)2, Hong Zhu(朱弘)1, and Xuefeng Sun(孙学峰)1,3,†
1 Department of Physics, Key Laboratory of Strongly-Coupled Quantum Matter Physics(CAS), University of Science and Technology of China, Hefei 230026, China;
2 Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996-1200, USA;
3 Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
Abstract  Low-temperature thermal conductivity ($\kappa$), as well as the magnetic properties and specific heat, are studied for the frustrated zigzag spin-chain material SrEr$_{2}$O$_{4}$ by using single-crystal samples. The specific heat data indicate the long-range antiferromagnetic transition at $\sim 0.73 $ K and the existence of strong magnetic fluctuations. The magnetizations at very low temperatures for magnetic field along the $c$ axis (spin chain direction) or the $a$ axis reveal the field-induced magnetic transitions. The $\kappa $ shows a strong dependence on magnetic field, applied along the $c$ axis or the $a$ axis, which is closely related to the magnetic transitions. Furthermore, high magnetic field induces a strong increase of $\kappa $. These results indicate that thermal conductivity along either the $c$ axis or the $a$ axis are mainly contributed by phonons, while magnetic excitations play a role of scattering phonons.
Keywords:  spin chain      quantum spin system      thermal conductivity  
Received:  08 March 2022      Revised:  16 March 2022      Accepted manuscript online:  17 March 2022
PACS:  75.50.-y (Studies of specific magnetic materials)  
  75.50.Ee (Antiferromagnetics)  
Fund: We thank Jichuan Wu for helps on experiments. Project supported by the National Natural Science Foundation of China (Grant Nos. U1832209 and 11874336). The work at the University of Tennessee (H D Zhao) was supported by the NSF with Grant No. NSF-DMR-2003117.
Corresponding Authors:  Xuefeng Sun     E-mail:  xfsun@ustc.edu.cn

Cite this article: 

Liguo Chu(褚利国), Shuangkui Guang(光双魁), Haidong Zhou(周海东), Hong Zhu(朱弘), and Xuefeng Sun(孙学峰) Low-temperature heat transport of the zigzag spin-chain compound SrEr2O4 2022 Chin. Phys. B 31 087505

[1] Haldane F D M 1983 Phys. Rev. Lett. 50 1153
[2] Haldane F D M 1983 Phys. Lett. A 93 464
[3] Fan Y and Yu R 2020 Chin. Phys. B 29 057505
[4] Zhao B, Takahashi J and Sandvik A W 2020 Chin. Phys. B 29 057506
[5] Wu L S, Gannon W J, Zaliznyak I A, Tsvelik A M, Brockmann M, Caux J S, Kim M S, Qiu Y, Copley J R D, Ehlers G, Podlesnyak A and Aronson M C 2016 Science 352 1206
[6] Shen Y, Li Y D, Wo H, Li Y, Shen S, Pan B, Wang Q, Walker H C, Steffens P, Boehm M, Hao Y Q, Quintero-Castro D L, Harriger L W, Frontzek M D, Hao L, Meng S Q, Zhang Q M, Chen G and Zhao J 2016 Nature 540 559
[7] Castelnovo C, Moessner R and Sondhi S 2008 Nature 451 42
[8] Karunadasa H, Huang Q, Ueland B G, Lynn J W, Schiffer P, Regan K A and Cava R J 2005 Phys. Rev. B 71 144414
[9] Petrenko O A, Balakrishnan G, Wilson N R, de Brion S, Suard E and Chapon L C 2008 Phys. Rev. B 78 184410
[10] Hayes T J, Balakrishnan G, Deen P P, Manuel P, Chapon L C and Petrenko O A 2011 Phys. Rev. B 84 174435
[11] Hayes T J, Young O, Balakrishnan G and Petrenko O A 2012 J. Phys. Soc. Jpn. 81 024708
[12] Zhao X, Zhao Z Y, Liu X G and Sun X F 2016 Sci. China-Phys. Mech. Astron. 59 117501
[13] Hess C 2007 Eur. Phys. J. Spec. Top. 151 73
[14] Sologubenko A V, Lorenz T, Ott H R and Friemuth A 2007 J. Low Temp. Phys. 147 387
[15] Yamashita M, Nakata N, Senshu Y, Masaki N, Yamamoto H M, Kato R, Shibauchi T and Matsuda Y 2010 Science 328 1246
[16] Li N, Huang Q, Yue X Y, Chu W J, Chen Q, Choi E S, Zhao X, Zhou H D and Sun X F 2020 Nat. Commun. 11 4216
[17] Rao X, Hussain G, Huang Q, Chu W J, Li N, Zhao X, Dun Z, Choi E S, Asaba T, Chen L, Li L, Yue X Y, Wang N N, Cheng J G, Gao Y H, Shen Y, Zhao J, Chen G, Zhou H D and Sun X F 2021 Nat. Commun. 12 4949
[18] Li Q J, Zhao Z Y, Fan C, Zhang F B, Zhou H D, Zhao X and Sun X F 2013 Phys. Rev. B 87 214408
[19] Gu C C, Zhao Z Y, Chen X L, Lee M, Choi E S, Han Y Y, Ling L S, Pi L, Zhang Y H, Chen G, Yang Z R, Zhou H D and Sun X F 2018 Phys. Rev. Lett. 120 147204
[20] Che H L, Zhao Z Y, Rao X, Chu L G, Li N, Chu W J, Gao P, Yue X Y, Zhou Y, Li Q J, Huang Q, Choi E S, Han Y Y, He Z Z, Zhou H D, Zhao X and Sun X F 2020 Phys. Rev. Materials 4 054406
[21] de Réotier P D, Yaouanc A, Chapuis Y, Curnoe S H, Grenier B, Ressouche E, Marin C, Lago J, Baines C and Giblin S R 2012 Phys. Rev. B 86 104424
[22] Malkin B Z, Nikitin S I, Mumdzhi I E, Zverev D G, Yusupov R V, Gilmutdinov I F, Batulin R, Gabbasov B F, Kiiamov A G, Adroja D T, Young O and Petrenko O A 2015 Phys. Rev. B 89 094415
[23] Mariano S, Ricardo P, Antonio S and Roberto E L 2016 Braz. J. Phys. 46 206
[24] Tari A 2003 Specific Heat of Matter at Low Temperatures (London:Imperial College Press)
[25] Li H F, Wildes A, Hou B, Zhang C, Schmitz B, Meuffels P, Roth G and Bruckel T 2014 RSC Adv. 4 53602
[26] Fennell A, Pomjakushin V Y, Uldry A, Delley B, Prévost B, Désilets-Benoit A, Bianchi A D, Bewley R I, Hansen B R, Klimczuk T, Cava R J and Kenzelmann M 2014 Phys. Rev. B 89 224511
[27] Prévost B, Gauthier N, Pomjakushin V Y, Delley B, Walker H C, Kenzelmann M and Bianchi A D 2018 Phys. Rev. B 98 144428
[28] Selke W 1988 Phys. Rep. 170 213
[29] Gauthier N, Fennell A, Prvost B, Uldry A C, Delley B, Sibille R, Dsilets-Benoit A, Dabkowska H A, Nilsen G J, Regnault L P, White J S, Niedermayer C, Pomjakushin V, Bianchi A D and Kenzelmann M 2017 Phys. Rev. B 95 134430
[30] Wen J J, Tian W, Garlea V O, Koohpayeh S M, McQueen T M, Li H F, Yan J Q, Rodriguez-Rivera J A, Vaknin D and Broholm C L 2015 Phys. Rev. B 91 054424
[31] Kassan-ongly F A 2001 Phase Transitions 74 353
[32] Taherkhani F, Daryaei E, Abroshan H, Akbarzadeh H, Parsafar G and Fortunelli A 2011 Phase Transitions 84 77
[33] Cheffings T H, Lees M R, Balakrishnan G and Petrenko O A 2013 J. Phys.:Condens. Matter 25 256001
[34] Berman R 1976 Thermal Conduction in Solids (Oxford:Oxford University Press)
[35] Li N, Huang Q, Brassington A, Yue X Y, Chu W J, Guang S K, Zhou X H, Gao P, Feng E X, Cao H B, Choi E S, Sun Y, Li Q J, Zhao X, Zhou H D and Sun X F 2021 Phys. Rev. B 104 104403
[36] Fortune N A, Huang Q, Hong T, Ma J, Choi E S, Hannahs S T, Zhao Z Y, Sun X F, Takano Y and Zhou H D 2021 Phys. Rev. B 103 184425
[37] Zhao Z Y, Li Q J, Liu X G, Rao X, Che H L, Chu L G, He Z Z, Zhao X and Sun X F 2019 Phys. Rev. B 99 224428
[38] Song J D, Wang X M, Zhao Z Y, Wu J C, Zhao J Y, Liu X G, Zhao X and Sun X F 2017 Phys. Rev. B 95 224419
[39] Sun X F, Tsukada I, Suzuki T, Komiya S and Ando Y 2005 Phys. Rev. B 72 104501
[40] Sun X F, Taskin A A, Zhao X, Lavrov A N and Ando Y 2008 Phys. Rev. B 77 054436
[41] Mcclintock P V E, Morton I P, Orbach R and Rosenberg H M 1967 Proc. R. Soc. London, Ser. A 298 359
[42] Metcalfe M J and Rosenberg H M 1972 J. Phys. C 5 450
[43] Lacroix C, Mendels P and Mila F 2011 Introduction to Frustrated Magnetism:Materials, Experiments, Theory, Vol. 164 (New York:Springer)
[44] Naruse K, Kawamata T, Ohno M, Matsuoka Y, Sudo H, Nagasawa H, Hagiya Y, Sasaki T and Koike Y 2014 J. Phys.:Conf. Ser. 568 042014
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Effects of phonon bandgap on phonon-phonon scattering in ultrahigh thermal conductivity θ-phase TaN
Chao Wu(吴超), Chenhan Liu(刘晨晗). Chin. Phys. B, 2023, 32(4): 046502.
[3] Modeling of thermal conductivity for disordered carbon nanotube networks
Hao Yin(殷浩), Zhiguo Liu(刘治国), and Juekuan Yang(杨决宽). Chin. Phys. B, 2023, 32(4): 044401.
[4] Exact surface energy and elementary excitations of the XXX spin-1/2 chain with arbitrary non-diagonal boundary fields
Jia-Sheng Dong(董家生), Pengcheng Lu(路鹏程), Pei Sun(孙佩), Yi Qiao(乔艺), Junpeng Cao(曹俊鹏), Kun Hao(郝昆), and Wen-Li Yang(杨文力). Chin. Phys. B, 2023, 32(1): 017501.
[5] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[6] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[7] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[8] Investigating the thermal conductivity of materials by analyzing the temperature distribution in diamond anvils cell under high pressure
Caihong Jia(贾彩红), Min Cao(曹敏), Tingting Ji(冀婷婷), Dawei Jiang(蒋大伟), and Chunxiao Gao(高春晓). Chin. Phys. B, 2022, 31(4): 040701.
[9] Lattice thermal conduction in cadmium arsenide
R F Chinnappagoudra, M D Kamatagi, N R Patil, and N S Sankeshwar. Chin. Phys. B, 2022, 31(11): 116301.
[10] Unusual thermodynamics of low-energy phonons in the Dirac semimetal Cd3As2
Zhen Wang(王振), Hengcan Zhao(赵恒灿), Meng Lyu(吕孟), Junsen Xiang(项俊森), Qingxin Dong(董庆新), Genfu Chen(陈根富), Shuai Zhang(张帅), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(10): 106501.
[11] Accurate determination of anisotropic thermal conductivity for ultrathin composite film
Qiu-Hao Zhu(朱秋毫), Jing-Song Peng(彭景凇), Xiao Guo(郭潇), Ru-Xuan Zhang(张如轩), Lei Jiang(江雷), Qun-Feng Cheng(程群峰), and Wen-Jie Liang(梁文杰). Chin. Phys. B, 2022, 31(10): 108102.
[12] Detection of multi-spin interaction of a quenched XY chain by the average work and the relative entropy
Xiu-Xing Zhang(张修兴), Fang-Jv Li(李芳菊), Kai Wang(王凯), Jing Xue(薛晶), Guang-Wen Huo(霍广文), Ai-Ping Fang(方爱平), and Hong-Rong Li(李宏荣). Chin. Phys. B, 2021, 30(9): 090504.
[13] Probing thermal properties of vanadium dioxide thin films by time-domain thermoreflectance without metal film
Qing-Jian Lu(陆青鑑), Min Gao(高敏), Chang Lu(路畅), Fei Long(龙飞), Tai-Song Pan(潘泰松), and Yuan Lin(林媛). Chin. Phys. B, 2021, 30(9): 096801.
[14] Two-dimensional square-Au2S monolayer: A promising thermoelectric material with ultralow lattice thermal conductivity and high power factor
Wei Zhang(张伟), Xiao-Qiang Zhang(张晓强), Lei Liu(刘蕾), Zhao-Qi Wang(王朝棋), and Zhi-Guo Li(李治国). Chin. Phys. B, 2021, 30(7): 077405.
[15] Emergent O(4) symmetry at the phase transition from plaquette-singlet to antiferromagnetic order in quasi-two-dimensional quantum magnets
Guangyu Sun(孙光宇), Nvsen Ma(马女森), Bowen Zhao(赵博文), Anders W. Sandvik, and Zi Yang Meng(孟子杨). Chin. Phys. B, 2021, 30(6): 067505.
No Suggested Reading articles found!