Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 066103    DOI: 10.1088/1674-1056/21/6/066103
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Density functional study of the pressure tensor for inhomogeneous Lennard–Jones fluids

Sun Zong-Li(孙宗利)a)†, Kang Yan-Shuang(康艳霜) b), Kang Yan-Mei(康艳梅)c), Liu Zhi-Cheng(刘志成)a), and Ma Heng-Xin(马恒心) b)
a. Science and Technology College, North China Electric Power University, Baoding 071051, China;
b. College of Science, Agriculture University of Hebei, Baoding 071001, China;
c. Department of Information Science and Technology, University of International Relations, Beijing 100091, China
Abstract  Based on classical density functional theory, an expression of the pressure tensor for inhomogeneous fluids is presented. This takes into account greater correlation between particles, especially for systems that are geometrically confined or involve an interface. The density and pressure components of Lennard-Jones fluids confined in hard and softened nano-cavities are calculated. A comparison between the results of this work and IK expression suggests that the agreement depends on temperature. The interfacial tension for hard sphere fluids agrees well with the Monte Carlo result when the bulk density is not too large. The results of the solid-fluid interfacial tension for Lennard-Jones fluids demonstrate that different types of external potentials modulate the interfacial tension in different manners.
Keywords:  density functional theory      pressure tensor      pair density      interfacial tension  
Received:  23 November 2011      Revised:  03 January 2012      Accepted manuscript online: 
PACS:  61.20.Gy (Theory and models of liquid structure)  
  62.10.-s  
Fund: Project supported by the North China Electric Power University Campus Foundation (Grant No. 200911036).
Corresponding Authors:  Sun Zong-Li     E-mail:  zongli_sun@163.com

Cite this article: 

Sun Zong-Li(孙宗利), Kang Yan-Shuang(康艳霜), Kang Yan-Mei(康艳梅), Liu Zhi-Cheng(刘志成), and Ma Heng-Xin(马恒心) Density functional study of the pressure tensor for inhomogeneous Lennard–Jones fluids 2012 Chin. Phys. B 21 066103

[1] Rowlinson J S and Widom B 1982 Molecular Theory of Capillarity (Oxford: Clarendon Press)
[2] Croxton C A 1986 Fluid Interfacial Phenomena (New York: Wiley)
[3] Irving J H and Kirkwood J G 1950 J. Chem. Phys. 18 817
[4] Harasima A 1958 Adv. Chem. Phys. 1 203
[5] Percus J K 1986 Chem. Phys. Lett. 123 311
[6] Todd B D, Evans D J and Daivis P J 1995 Phys. Rev. E 52 1627
[7] Evans R 1979 Adv. Phys. 28 143
[8] Henderson D 1992 Fundamentals of Inhomogeneous Fluids (New York: Dekker)
[9] Hansen J P and McDonald I R 1986 Theory of Simple Liquids 2nd edn. (New York: Academic)
[10] Ramakrishnan T V and Yussouf M 1979 Phys. Rev. B 19 2775
[11] Calleja M, North A N, Powels J G and Rickayzen G 1991 Mol. Phys. 73 973
[12] Zhou S Q and Ruckenstein E 2000 Phys. Rev. E 61 2704
[13] Zhou S Q and Ruckenstein E 2000 J. Chem. Phys. 112 8079
[14] Choudhury N and Ghosh S K 2001 J. Chem. Phys. 114 8530
[15] Kim S C and Suh S Y 2002 J. Chem. Phys. 117 9880
[16] Zhou S Q 2008 Chin. Phys. B 17 3812
[17] Tarazona P 1985 Phys. Rev. A 31 2672
[18] Denton A R and Ashcroft N W 1985 Phys. Rev. A 32 2909
[19] Rosenfeld Y 1989 Phys. Rev. Lett. 63 980
[20] Yu Y X and Wu J Z 2002 J. Chem. Phys. 117 10156
[21] Yu Y X 2009 J. Chem. Phys. 131 024704
[22] Peng B and Yu Y X 2008 J. Phys. Chem. B 112 15407
[23] Fu D and Li X S 2006 J. Chem. Phys. 125 084716
[24] Yu Y X, You F Q, Tang Y P, Gao G H and Li Y G 2006 J. Phys. Chem. B 110 334
[25] Fu D and Liao T 2007 Chin. Phys. 16 3475
[26] Cao D P, Cheng L S and Wang W C 2007 Chin. Phys. 16 2296
[27] Tang Z X, Scriven L E and Davis H T 1991 J. Chem. Phys. 114 2659
[28] Trokhymchuk A, Nezbeda I, Jirs醟 J and Henderson D 2005 J. Chem. Phys. 123 024501
[29] Cotterman R L, Schwarz B J and Prausnitz J M 1986 AIChE J. 32 1787
[30] Tang Y P 2003 J. Chem. Phys. 118 4140
[31] Fu D 2006 J. Chem. Phys. 124 164701
[32] Heni M and Löwen H 1999 Phys. Rev. E 60 7057
[1] Predicting novel atomic structure of the lowest-energy FenP13-n(n=0-13) clusters: A new parameter for characterizing chemical stability
Yuanqi Jiang(蒋元祺), Ping Peng(彭平). Chin. Phys. B, 2023, 32(4): 047102.
[2] Ferroelectricity induced by the absorption of water molecules on double helix SnIP
Dan Liu(刘聃), Ran Wei(魏冉), Lin Han(韩琳), Chen Zhu(朱琛), and Shuai Dong(董帅). Chin. Phys. B, 2023, 32(3): 037701.
[3] A theoretical study of fragmentation dynamics of water dimer by proton impact
Zhi-Ping Wang(王志萍), Xue-Fen Xu(许雪芬), Feng-Shou Zhang(张丰收), and Xu Wang(王旭). Chin. Phys. B, 2023, 32(3): 033401.
[4] Plasmonic hybridization properties in polyenes octatetraene molecules based on theoretical computation
Nan Gao(高楠), Guodong Zhu(朱国栋), Yingzhou Huang(黄映洲), and Yurui Fang(方蔚瑞). Chin. Phys. B, 2023, 32(3): 037102.
[5] Effects of π-conjugation-substitution on ESIPT process for oxazoline-substituted hydroxyfluorenes
Di Wang(汪迪), Qiao Zhou(周悄), Qiang Wei(魏强), and Peng Song(宋朋). Chin. Phys. B, 2023, 32(2): 028201.
[6] High-order harmonic generation of the cyclo[18]carbon molecule irradiated by circularly polarized laser pulse
Shu-Shan Zhou(周书山), Yu-Jun Yang(杨玉军), Yang Yang(杨扬), Ming-Yue Suo(索明月), Dong-Yuan Li(李东垣), Yue Qiao(乔月), Hai-Ying Yuan(袁海颖), Wen-Di Lan(蓝文迪), and Mu-Hong Hu(胡木宏). Chin. Phys. B, 2023, 32(1): 013201.
[7] Superconductivity and unconventional density waves in vanadium-based kagome materials AV3Sb5
Hui Chen(陈辉), Bin Hu(胡彬), Yuhan Ye(耶郁晗), Haitao Yang(杨海涛), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(9): 097405.
[8] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[9] Adaptive semi-empirical model for non-contact atomic force microscopy
Xi Chen(陈曦), Jun-Kai Tong(童君开), and Zhi-Xin Hu(胡智鑫). Chin. Phys. B, 2022, 31(8): 088202.
[10] Collision site effect on the radiation dynamics of cytosine induced by proton
Xu Wang(王旭), Zhi-Ping Wang(王志萍), Feng-Shou Zhang(张丰收), and Chao-Yi Qian (钱超义). Chin. Phys. B, 2022, 31(6): 063401.
[11] First principles investigation on Li or Sn codoped hexagonal tungsten bronzes as the near-infrared shielding material
Bo-Shen Zhou(周博深), Hao-Ran Gao(高浩然), Yu-Chen Liu(刘雨辰), Zi-Mu Li(李子木),Yang-Yang Huang(黄阳阳), Fu-Chun Liu(刘福春), and Xiao-Chun Wang(王晓春). Chin. Phys. B, 2022, 31(5): 057804.
[12] Laser-induced fluorescence experimental spectroscopy and theoretical calculations of uranium monoxide
Xi-Lin Bai(白西林), Xue-Dong Zhang(张雪东), Fu-Qiang Zhang(张富强), and Timothy C Steimle. Chin. Phys. B, 2022, 31(5): 053301.
[13] Tunable electronic properties of GaS-SnS2 heterostructure by strain and electric field
Da-Hua Ren(任达华), Qiang Li(李强), Kai Qian(钱楷), and Xing-Yi Tan(谭兴毅). Chin. Phys. B, 2022, 31(4): 047102.
[14] Insights into the adsorption of water and oxygen on the cubic CsPbBr3 surfaces: A first-principles study
Xin Zhang(张鑫), Ruge Quhe(屈贺如歌), and Ming Lei(雷鸣). Chin. Phys. B, 2022, 31(4): 046401.
[15] Influence of intramolecular hydrogen bond formation sites on fluorescence mechanism
Hong-Bin Zhan(战鸿彬), Heng-Wei Zhang(张恒炜), Jun-Jie Jiang(江俊杰), Yi Wang(王一), Xu Fei(费旭), and Jing Tian(田晶). Chin. Phys. B, 2022, 31(3): 038201.
No Suggested Reading articles found!