Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 034216    DOI: 10.1088/1674-1056/21/3/034216
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Thermal modeling and the optimized design of metal plate cooling systems for single concentrator solar cells

Cui Min(崔敏)a), Chen Nuo-Fu(陈诺夫)b), and Deng Jin-Xiang(邓金祥)a)
a. College of Applied Sciences, Beijing University of Technology, Beijing 100124, China;
b. New and Renewable Energy of Beijing Key Laboratory, North China Electric Power University, Beijing 102206, China
Abstract  A metal plate cooling model for 400× single concentrator solar cells was established. The effects of the thickness and the radius of the metal plate, and the air environment on the temperature of the solar cells were analyzed in detail. It is shown that the temperature of the solar cells decreased sharply at the beginning, with the increase in the thickness of the metal plate, and then changed more smoothly. When the radius of the metal plate was 4 cm and the thickness increased to 2 mm or thicker, the temperature of the solar cell basically stabilized at about 53 ℃. Increasing the radius of the metal plate and the convective transfer coefficient made the temperature of the solar cell decrease remarkably. The effects of Al and Cu as the metal plate material on cooling were analyzed contrastively, and demonstrated the superiority of Al material for the cooling system. Furthermore, considering cost reduction, space holding and the stress of the system, we optimized the structural design of the metal plate. The simulated results can be referred to the design of the structure for the metal plate. Finally, a method to devise the structure of the metal plate for single concentrator solar cells was given.
Keywords:  metal plate      modeling      concentrator solar cells      cooling  
Received:  04 July 2011      Revised:  25 August 2011      Accepted manuscript online: 
PACS:  42.79.Ek (Solar collectors and concentrators)  
  44.05.+e (Analytical and numerical techniques)  
  44.10.+i (Heat conduction)  
Fund: Project supported by the Doctoral Initial Fund of Beijing University of Technology, China (Grant No. X0006015201101) and the National Natural Science Foundation of China (Grant No. 10804005).
Corresponding Authors:  Cui Min,mcui@bjut.edu.cn     E-mail:  mcui@bjut.edu.cn

Cite this article: 

Cui Min(崔敏), Chen Nuo-Fu(陈诺夫), and Deng Jin-Xiang(邓金祥) Thermal modeling and the optimized design of metal plate cooling systems for single concentrator solar cells 2012 Chin. Phys. B 21 034216

[1] Anja R, Christopher J D and David R M 2005 Sol. Energy Mat. Sol. C 86 451
[2] Martin A G, Keith E, Yoshihiro H and Wilhelm W 2011 Prog. Photovolt: Res. Appl. 19 84
[3] King R R, Boca A, Hong W, Liu X Q, Bhusari D, Larrabee D, Edmondson K M, Law D C, Fetzer C M, Mesropian S and Karam N H 2009 24th European Photovoltaic Solar Energy Conference and Exhibition 21
[4] Cui M, Chen N F, Yang X L, Wang Y, Bai Y M and Zhang X W 2009 J. Semicond. 30 044011
[5] Meneses R D, Horley P P, Gonzalez H J, Vorobiev V Y and Gorley P N 2005 Solar Energy 78 243
[6] Chow S, Valdivia C E, Wheeldon J F, Ares R, Arenas O J, Aimez V and Hinzer K 2010 Proc. SPIE 7750 775035
[7] Edenburn M W 1980 14th IEEE PVSC 771
[8] Cheknane A, Benyoucef B and Chaker A 2006 Semicond. Sci. Technol. 21 144
[9] Araki K, Uozumi H and Yamaguchi M 2002 29th IEEE PVSC 1568
[10] Vincenzi D, Stefancich M, Bizzi F, Antonini A, Ronzoni A, Butturi M A, Malagu C and Martinelli G 2003 ISES
[11] Lasich J B 2002 Australia Patent WO02080286
[12] Sun J, Israeli T, Reddy T A, Scoles K, Gordon J M and Feuermann D 2005 J. Sol. Energy Eng. 127 138
[13] Lu Q K and Zhao H F 2003 Method of Mathematical Physics (Beijing: Higher Education Press) p. 434 (in Chinese)
[14] Yang S M and Tao W S 1998 Heat Transfer (Beijing: Higher Education Press) p. 20 (in Chinese)
[15] Sun D K, Zhu M F, Yang C R, Pan S Y and Dai T 2009 Acta Phys. Sin. 58 285 (in Chinese)
[1] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[2] Investigation of spatial structure and sympathetic cooling in the 9Be+40Ca+ bi-component Coulomb crystals
Min Li(李敏), Yong Zhang(张勇), Qian-Yu Zhang(张乾煜), Wen-Li Bai(白文丽), Sheng-Guo He(何胜国), Wen-Cui Peng(彭文翠), and Xin Tong(童昕). Chin. Phys. B, 2023, 32(3): 036402.
[3] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
[4] Effective sideband cooling in an ytterbium optical lattice clock
Jin-Qi Wang(王进起), Ang Zhang(张昂), Cong-Cong Tian(田聪聪), Ni Yin(殷妮), Qiang Zhu(朱强), Bing Wang(王兵), Zhuan-Xian Xiong(熊转贤), Ling-Xiang He(贺凌翔), and Bao-Long Lv(吕宝龙). Chin. Phys. B, 2022, 31(9): 090601.
[5] Data-driven modeling of a four-dimensional stochastic projectile system
Yong Huang(黄勇) and Yang Li(李扬). Chin. Phys. B, 2022, 31(7): 070501.
[6] Enhanced cold mercury atom production with two-dimensional magneto-optical trap
Ye Zhang(张晔), Qi-Xin Liu(刘琪鑫), Jian-Fang Sun(孙剑芳), Zhen Xu(徐震), and Yu-Zhu Wang(王育竹). Chin. Phys. B, 2022, 31(7): 073701.
[7] An electromagnetic simulation assisted small signal modeling method for InP double-heterojunction bipolar transistors
Yanzhe Wang(王彦喆), Wuchang Ding(丁武昌), Yongbo Su(苏永波), Feng Yang(杨枫),Jianjun Ding(丁建君), Fugui Zhou(周福贵), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(6): 068502.
[8] Extrinsic equivalent circuit modeling of InP HEMTs based on full-wave electromagnetic simulation
Shi-Yu Feng(冯识谕), Yong-Bo Su(苏永波), Peng Ding(丁芃), Jing-Tao Zhou(周静涛), Song-Ang Peng(彭松昂), Wu-Chang Ding(丁武昌), and Zhi Jin(金智). Chin. Phys. B, 2022, 31(4): 047303.
[9] Development of a cryogen-free dilution refrigerator
Zhongqing Ji(姬忠庆), Jie Fan(樊洁), Jing Dong(董靖), Yongbo Bian(边勇波), and Zhi-Gang Cheng(程智刚). Chin. Phys. B, 2022, 31(12): 120703.
[10] Parallel optimization of underwater acoustic models: A survey
Zi-jie Zhu(祝子杰), Shu-qing Ma(马树青), Xiao-Qian Zhu(朱小谦), Qiang Lan(蓝强), Sheng-Chun Piao(朴胜春), and Yu-Sheng Cheng(程玉胜). Chin. Phys. B, 2022, 31(10): 104301.
[11] An improved model of damage depth of shock-melted metal in microspall under triangular wave loading
Wen-Bin Liu(刘文斌), An-Min He(何安民), Kun Wang(王昆), Jian-Ting Xin(辛建婷), Jian-Li Shao(邵建立), Nan-Sheng Liu(刘难生), and Pei Wang(王裴). Chin. Phys. B, 2021, 30(9): 096202.
[12] Effect of the potential function and strain rate on mechanical behavior of the single crystal Ni-based alloys: A molecular dynamics study
Qian Yin(尹倩), Ye-Da Lian(连业达), Rong-Hai Wu(巫荣海), Li-Qiang Gao(高利强), Shu-Qun Chen(陈树群), and Zhi-Xun Wen(温志勋). Chin. Phys. B, 2021, 30(8): 080204.
[13] Simulation and experiment of the cooling effect of trapped ion by pulsed laser
Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林). Chin. Phys. B, 2021, 30(7): 073701.
[14] Fast qubit initialization in a superconducting circuit
Tianqi Huang(黄天棋), Wen Zheng(郑文), Shuqing Song(宋树清), Yuqian Dong(董煜倩), Xiaopei Yang(杨晓沛), Zhikun Han(韩志坤), Dong Lan(兰栋), and Xinsheng Tan(谭新生). Chin. Phys. B, 2021, 30(7): 070310.
[15] A comparative study on radiation reliability of composite channel InP high electron mobility transistors
Jia-Jia Zhang(张佳佳), Peng Ding(丁芃), Ya-Nan Jin(靳雅楠), Sheng-Hao Meng(孟圣皓), Xiang-Qian Zhao(赵向前), Yan-Fei Hu(胡彦飞), Ying-Hui Zhong(钟英辉), and Zhi Jin(金智). Chin. Phys. B, 2021, 30(7): 070702.
No Suggested Reading articles found!