|
|
Enhanced cold mercury atom production with two-dimensional magneto-optical trap |
Ye Zhang(张晔)1,2,3, Qi-Xin Liu(刘琪鑫)1,2,3, Jian-Fang Sun(孙剑芳)1,2,3, Zhen Xu(徐震)1,2,3,†, and Yu-Zhu Wang(王育竹)1,2,3 |
1 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China; 2 Key Laboratory of Quantum Optics, Chinese Academy of Sciences, Shanghai 201800, China; 3 University of Chinese Academy of Sciences, Beijing 100049, China |
|
|
Abstract A cold atom source is important for quantum metrology and precision measurement. To reduce the quantum projection noise limit in optical lattice clock, one can increase the number of cold atoms and reduce the dead time by enhancing the loading rate. In this work, we realize an enhanced cold mercury atom source based on a two-dimensional (2D) magneto-optical trap (MOT). The vacuum system is composed of two titanium chambers connected with a differential pumping tube. Two stable cooling laser systems are adopted for the 2D-MOT and the three-dimensional (3D)-MOT, respectively. Using an optimized 2D-MOT and push beam, about 1.3×106 atoms, which are almost an order of magnitude higher than using a pure 3D-MOT, are loaded into the 3D-MOT for 202Hg atoms. This enhanced cold mercury atom source is helpful in increasing the frequency stability of a neutral mercury lattice clock.
|
Received: 07 December 2021
Revised: 22 January 2022
Accepted manuscript online: 10 February 2022
|
PACS:
|
37.10.De
|
(Atom cooling methods)
|
|
37.10.Gh
|
(Atom traps and guides)
|
|
06.30.Ft
|
(Time and frequency)
|
|
Corresponding Authors:
Zhen Xu
E-mail: xuzhen@mail.siom.ac.cn
|
Cite this article:
Ye Zhang(张晔), Qi-Xin Liu(刘琪鑫), Jian-Fang Sun(孙剑芳), Zhen Xu(徐震), and Yu-Zhu Wang(王育竹) Enhanced cold mercury atom production with two-dimensional magneto-optical trap 2022 Chin. Phys. B 31 073701
|
[1] Lu Z T, Corwin K L, Renn M J, Anderson M H, Cornell E A and Wieman C E 1996 Phys. Rev. Lett. 77 3331 [2] Schoser J, Bat A, R L, Schweikhard V and Pfau T 2002 Phys. Rev. A 66 023410 [3] Dieckmann K, Spreeuw R, M Weidemüller and Walraven J 1998 Phys. Rev. A 58 3891 [4] Catani J, Maioli P, Sarlo L D, Minardi F and Inguscio M 2006 Phys. Rev. A 73 033415 [5] Wu C J, Jun R, Jiang C, Hui Z and Zhang S G 2013 Acta Phys. Sin. 62 063201 (in Chinese) [6] Muller T, Wendrich T, Gilowski M, Jentsch C, Rasel E M and Ertmer W 2007 Phys. Rev. A 76 063611 [7] Dorscher S, Thobe A, Hundt B, Kochanke A, Targat, Windpassinger, Becker C and Sengstock K 2013 Rev. Sci. Instrum. 84 043109 [8] Chen Y D, Li W X, Chou M E, Kuo C H and Tung S 2021 Phys. Rev. A 103 023102 [9] Chaudhuri S, Roy S and Unnikrishnan C S 2006 Phys. Rev. A 74 023406 [10] Tiecke T G, Gensemer S D, Ludewig A and Walraven JTM 2009 Phys. Rev. A 80 013409 [11] Shanchao Z, Chen J F, Liu C, Zhou S Y, Loy M M T, Wong G K L and Du S W 2012 Rev. Sci. Instrum. 83 073102 [12] Nosske I, Couturier L, Hu F, Tan C and Weidemüller M 2017 Phys. Rev. A 96 039901 [13] Li K, Zhang D, Gao T, Peng S G and Jiang K 2015 Phys. Rev. A 92 013419 [14] Barbiero M, Tarallo M G, Calonico D, Levi F and Ferrari G 2019 Phys. Rev. Appl. 13 014013 [15] Scheid M, Markert F, Walz J, Wang J Y, Kirchner M and Hansch T W 2007 Opt. Lett. 32 955 [16] Paul J, Kaneda Y, Wang T L, Lytle C and Jones R J 2011 Opt. Lett. 36 61 [17] Hachisu H, Miyagishi K, Porsev S G, Derevianko A, Ovsiannikov V D, Pal'Chikov V G, Takamoto M and Katori H 2008 Phys. Rev. Lett. 100 053001 [18] Steinborn R, Koglbauer A, Bachor P, Diehl T and Kolbe D 2013 Opt. Express 21 022693 [19] Hu J M, Zhang L, Liu H, Liu K, Xu Z and Feng Y 2013 Opt. Express 21 030958 [20] https://www.bipm.org/en/publications/mises-en-pratique/standard-frequencies-second [21] Yamanaka K, Ohmae N, Ushijima I, Takamoto M and Katori H 2015 Phys. Rev. Lett. 114 230801 [22] Noriaki O, Filippo B, Nils N and Hidetoshi K 2020 Opt. Express 28 015112 [23] Tyumenev R, Favier M, Bilicki S, Bookjans E, Targat R L, Lodewyck J, Nicolodi D, Coq Y L, Abgrall M and Guéna J 2016 New J. Phys. 18 113002 [24] Porsev S G and Derevianko A 2006 Phys. Rev. A 74 020502 [25] Liu H L, Yin S Q, Liu K K, Qian J, Xu Z, Hong T and Wang Y Z 2013 Chin. Phys. B 22 043701 [26] Zhang Y, Liu Q, Fu X H, Sun J F, Xu Z and Wang Y Z 2021 Opt. Laser Technol 139 106956 [27] Liu K K, Zhao R C, Gou W, Fu X H, Liu H L, Yin S Q, Sun J F, Xu Z and Wang Y Z 2016 Chin. Phys. Lett. 33 070602 [28] Lipka M, Parniak M and Wasilewski W 2017 Appl. Phys. B 123 238 [29] Gibble K E, Kasapi S and Chu S 1992 Opt. Lett. 17 526 [30] Steane A M, Chowdhury M and Foot C J 1992 J. Opt. Soc. Am. B 9 2142 [31] McFerran J J, Yi L, Mejri S and Bize S 2010 Opt. Lett. 35 003078 [32] Metcalf H J and Straten P V D 1999 Laser Cooling and Trapping (New York:Springer) p. 88 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|