Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 096202    DOI: 10.1088/1674-1056/abeb10

An improved model of damage depth of shock-melted metal in microspall under triangular wave loading

Wen-Bin Liu(刘文斌)1,2,3, An-Min He(何安民)2, Kun Wang(王昆)4, Jian-Ting Xin(辛建婷)5, Jian-Li Shao(邵建立)6, Nan-Sheng Liu(刘难生)1, and Pei Wang(王裴)1,2,7,†
1 Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China;
2 Institute of Applied Physics and Computational Mathematics, Beijing 100094, China;
3 Graduate School of China Academy of Engineering Physics, Beijing 100088, China;
4 College of Materials Science and Engineering, Hunan University, Changsha 410082, China;
5 Science and Technology on Plasma Physics Laboratory, Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China;
6 State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology, Beijing 100081, China;
7 Center for Applied Physics and Technology, Peking University, Beijing 100871, China
Abstract  Damage depth is an important dynamic parameter for describing the degree of material damage and is also a key fundamental issue in the field of impact compression technology. The present work is dedicated to the damage depth of shock-melted metal in microspall under triangular wave loading, and an improved model of damage depth considering the material's compressibility and relative movement is proposed. The damage depth obtained from the proposed model is in good agreement with the laser-driven shock loading experiment. Compared with the previous model, the proposed model can predict the damage depth of shock-melted metal in microspall more accurately. Furthermore, two-groups of the smoothed particle hydrodynamics (SPH) simulations are carried out to investigate the effects of peak stress and decay length of the incident triangular wave on the damage depth, respectively. As the decay length increases, the damage depth increases linearly. As the peak stress increases, the damage depth increases nonlinearly, and the increase in damage depth gradually slows down. The results of the SPH simulations adequately reproduce the results of the proposed model in terms of the damage depth. Finally, it is found that the threshold stress criterion can reflect the macroscopic characteristics of microspall of melted metal.
Keywords:  damage depth      theoretical modeling      microspall      triangular wave  
Received:  06 December 2020      Revised:  09 February 2021      Accepted manuscript online:  02 March 2021
PACS:  62.20.M- (Structural failure of materials)  
  62.50.Ef (Shock wave effects in solids and liquids) (Fracture)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1530261 and 11572054) and the Science Challenge Project, China (Grant No. TZ2016001).
Corresponding Authors:  Pei Wang     E-mail:

Cite this article: 

Wen-Bin Liu(刘文斌), An-Min He(何安民), Kun Wang(王昆), Jian-Ting Xin(辛建婷), Jian-Li Shao(邵建立), Nan-Sheng Liu(刘难生), and Pei Wang(王裴) An improved model of damage depth of shock-melted metal in microspall under triangular wave loading 2021 Chin. Phys. B 30 096202

[1] Antoun T, Seaman L, Curran D R, Kanel G I, Razorenov S V and Utkin A V 2003 Spall Fracture (New York: Springer) pp. 1-36
[2] Andriot P, Chapron P, Lambert V and Olive F 2004 Shock Waves in Condensed Matter, July 18-21, 1983, Amsterdam, North-Holland, p. 277280
[3] Smalyuk V A, Weber S V, Casey D T, Clark D S, Field J E, Haan S W, Hamza A V, Hoover D E, Landen O L, Nikroo A, Robey H F and Weber C R 2015 High Power Laser Sci. Eng. 3 E17
[4] Orth C D 2016 Phys. Plasmas 23 022706
[5] Chen Y T, Hong R K, Chen H Y, Tang T G and Ren G W 2017 Rev. Sci. Instrum. 88 013904
[6] Rességuier T D, Signor L, Dragon A and Roy G 2010 Int. J. Fract. 163 109
[7] Dai Y, He M, Bian H D, Lu B, Yan X N and Ma G H 2012 Appl. Phys. A 106 567574
[8] Oboňa J V, Ocelík V, Rao J C, Skolski J Z P, Römer G R B E, Huis in't Veld A J and Hosson J T M D 2014 Appl. Surf. Sci. 303 118
[9] Shugaev M V, Shih C Y, Karim E T, Wu C and Zhigilei L V 2017 Appl. Surf. Sci. 417 54
[10] Rességuier T D, Signor L, Dragon A, Boustie M, Roy G and Llorca F 2007 J. Appl. Phys. 101 013506
[11] Kanel G I, Savinykh A S, Garkushin G V and Razorenov S V 2015 J. Exp. Theor. Phys. Lett. 102 548
[12] Kuksin A Y, Norman G E, Pisarev V V, Stegailov V V and Yanilkin A V 2010 Phys. Rev. B 82 174101
[13] Xiang M Z, Jiang S Q, Cui J Z, Xu Y and Chen J 2021 Int. J. Plast. 136 102849
[14] Luo S N, An Q, Germann T C and Han L B 2009 J. Appl. Phys. 106 013502
[15] Shao J L, Wang P, He A M, Duan S Q and Qin C S 2013 J. Appl. Phys. 113 163507
[16] Shao J L, Wang P, He A M, Zhang R and Qin C S 2013 J. Appl. Phys. 114 173501
[17] Xiang M Z, Hu H B, Chen J and Long Y 2013 Model. Simul. Mater. Sci. Eng. 21 055005
[18] Xiang M Z, Chen J and Su R 2016 Comput. Mater. Sci. 173 109421
[19] Wang K, Zhang F G, He A M and Wang P 2019 J. Appl. Phys. 125 155107
[20] Shao J L, He A M and Wang P 2019 Chin. J. High. Press. Phys. 33 030110 (in Chinese)
[21] Wang J N, Wu F C, Wang P, He A M and Wu H A 2020 J. Appl. Phys. 127 135903
[22] Wu F C, Zhu Y B, Li X Z, Wang P, Wu Q and Wu H A 2019 J. Appl. Phys. 125 185901
[23] Shao J L, Wang C, Wang P, He A M and Zhang F G 2019 Mech. Mater. 131 78
[24] Chu G B, Xi T, Yu M H, Fan W, Zhao Y Q, Shui M, He W H, Zhang T K, Zhang B, Wu Y C, Zhou W M, Cao L F, Xin J T and Gu Y Q 2018 Rev. Sci. Instrum. 89 115106
[25] Wang P, Shao J L and Qin C S 2009 Acta. Phys. Sin. 58 1064 (in Chinese)
[26] Liu W B, Ma D J, He A M and Wang P 2018 Chin. Phys. B 27 016202
[27] Liu M B and Zhang Z L 2019 Sci. China Phys. Mech. Astron. 62 984701
[28] Jing F Q 1999 Introduction to Experimental Equation of State (Beijing: Science) pp. 25-29 (in Chinese)
[29] Tan H 2007 Introduction to Experiemntal Shocked-Wave Physics (Beijing: National Defence Inductry Press) pp. 113, 114, 188-190 (in Chinese)
[30] Monfared S K, Oró D M, Grover M, Hammerberg J E, LaLone B M, Pack C L, Schauer M M, Stevens G D, Stone J B, Turley W D and Buttler W T 2014 J. Appl. Phys. 116 063504
[1] Reconstruction and interpretation of photon Doppler velocimetry spectrum for ejecta particles from shock-loaded sample in vacuum
Xiao-Feng Shi(石晓峰), Dong-Jun Ma(马东军), Song-lin Dang(党松琳), Zong-Qiang Ma(马宗强), Hai-Quan Sun(孙海权), An-Min He(何安民), and Pei Wang(王裴). Chin. Phys. B, 2021, 30(6): 066201.
[2] Tensile-strain induced phonon splitting in diamond
Meifang Pu(蒲梅芳), Feng Zhang(张峰), Shan Liu(刘珊), Tetsuo Irifune(入舩徹男), Li Lei(雷力). Chin. Phys. B, 2019, 28(5): 053102.
[3] Thermomechanical response of aluminum alloys under the combined action of tensile loading and laser irradiations
Mohsan Jelani, Zewen Li(李泽文), Zhonghua Shen(沈中华), Maryam Sardar. Chin. Phys. B, 2018, 27(3): 037901.
[4] Ejecta from periodic grooved Sn surface under unsupported shocks
Wen-Bin Liu(刘文斌), Dong-Jun Ma(马东军), An-Min He(何安民), Pei Wang(王裴). Chin. Phys. B, 2018, 27(1): 016202.
[5] Influence of shockwave profile on ejecta from shocked Pb surface: Atomistic calculations
Guo-Wu Ren(任国武), Shi-Wen Zhang(张世文), Ren-Kai Hong(洪仁楷), Tie-Gang Tang(汤铁钢), Yong-Tao Chen(陈永涛). Chin. Phys. B, 2016, 25(8): 086202.
[6] Anti-plane problem analysis for icosahedral quasicrystals under shear loadings
Li Wu (李梧), Chai Yu-Zhen (柴玉珍). Chin. Phys. B, 2014, 23(11): 116201.
[7] Finite size specimens with cracks of icosahedral Al–Pd–Mn quasicrystals
Yang Lian-Zhi (杨连枝), Ricoeur Andreas, He Fan-Min (何蕃民), Gao Yang (高阳). Chin. Phys. B, 2014, 23(5): 056102.
[8] Fatigue damage behavior of a surface-mount electronic package under different cyclic applied loads
Ren Huai-Hui (任淮辉), Wang Xi-Shu (王习术). Chin. Phys. B, 2014, 23(4): 044601.
[9] A Dugdale–Barenblatt model for a strip with a semi-infinite crack embedded in decagonal quasicrystals
Li Wu (李梧), Xie Ling-Yun (解凌云). Chin. Phys. B, 2013, 22(3): 036201.
[10] Experimental and theoretical analysis of package-on-package structure under three-point bending loading
Jia Su (贾苏), Wang Xi-Shu (王习术), Ren Huai-Hui (任淮辉). Chin. Phys. B, 2012, 21(12): 126201.
[11] Ab initio investigation on mechanical properties of copper
Liu Yue-Lin (刘悦林), Gui Li-Jiang (桂漓江), Jin Shuo (金硕). Chin. Phys. B, 2012, 21(9): 096102.
[12] Fracture characteristics of bulk metallic glass under high speed impact
Sun Bao-Ru(孙宝茹), Zhan Zai-Ji(战再吉), Liang Bo(梁波), Zhang Rui-Jun(张瑞军), and Wang Wen-Kui(王文魁) . Chin. Phys. B, 2012, 21(5): 056101.
[13] Analytic solutions to a finite width strip with a single edge crack of two-dimensional quasicrystals
Li Wu(李梧) . Chin. Phys. B, 2011, 20(11): 116201.
[14] Non-equilibrium statistical theory about microscopic fatigue cracks of metal in magnetic field
Liu Zhao-Long(刘兆龙), Hu Hai-Yun(胡海云), Fan Tian-You(范天佑), and Xing Xiu-San(邢修三). Chin. Phys. B, 2010, 19(10): 108103.
[15] A novel anti-shock silicon etching apparatus for solving diaphragm release problems
Shi Sha-Li(石莎莉), Chen Da-Peng(陈大鹏), Ou Yi(欧毅), Jing Yu-Peng(景玉鹏), Xu Qiu-Xia(徐秋霞), and Ye Tian-Chun(叶甜春). Chin. Phys. B, 2010, 19(6): 060701.
No Suggested Reading articles found!