Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(12): 120703    DOI: 10.1088/1674-1056/ac9042
INSTRUMENTATION AND MEASUREMENT Prev   Next  

Development of a cryogen-free dilution refrigerator

Zhongqing Ji(姬忠庆)1,3, Jie Fan(樊洁)1,3, Jing Dong(董靖)1, Yongbo Bian(边勇波)1, and Zhi-Gang Cheng(程智刚)1,2,3,†
1 Beijing National Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China;
3 Songshan Lake Materials Laboratory, Dongguan 523808, China
Abstract  With thermal fluctuation strongly suppressed, low temperature environment is essential for studies of condensed matter physics and developments of quantum technologies. Ultra-low temperature below 20 mK has demonstrated its importance and significance in physical sciences and information techniques. Dilution refrigeration is by far the best feasible and reliable method to generate and keep lattice temperature in this range. With a potential shortage of helium supply, cryogen-free dilution refrigerator (CFDR), eliminating the necessity of regular helium refill, becomes the main facility for the purpose of creating ultralow temperature environments. Here we describe our successful construction of a CFDR which reached a base temperature of around 10.9 mK for continuous circulation and 8.6 mK for single-shot operation. We describe its operating mechanism and the designs of key components, especially some unique designs including heat switch and alumina thermal link. Possible improvements in the future are also discussed.
Keywords:  cryogen-free dilution refrigerator      heat exchanger      cooling power      helium  
Received:  18 July 2022      Revised:  06 September 2022      Accepted manuscript online:  08 September 2022
PACS:  07.20.Mc (Cryogenics; refrigerators, low-temperature detectors, and other low-temperature equipment)  
  67.25.-k (4He)  
  67.30.-n (3He)  
  67.25.bh (Films and restricted geometries)  
Fund: This work was supported by Key Research Program of Frontier Sciences, CAS (Grant No. ZDBS-LY-SLH0010), Beijing Natural Science Foundation (Grant No. JQ21002), and Beijing Council of Science and Technology (Grant Nos. Z201100008420006 and Z211100004021012).
Corresponding Authors:  Zhi-Gang Cheng     E-mail:  zgcheng@iphy.ac.cn

Cite this article: 

Zhongqing Ji(姬忠庆), Jie Fan(樊洁), Jing Dong(董靖), Yongbo Bian(边勇波), and Zhi-Gang Cheng(程智刚) Development of a cryogen-free dilution refrigerator 2022 Chin. Phys. B 31 120703

[1] Tsui D C, Stormer H L and Gossard A C 1982 Phys. Rev. Lett. 48 1559
[2] Willett R L, Pfeiffer L N and West K W 2009 Proc. Natl. Acad. Sci. USA 106 8853
[3] Fu H, Wang P, Hu Z, Li Y and Lin X 2021 Chin. Phys. B 30 020702
[4] Pan W, Xia J S, Stormer H L, Tsui D C, Vicente C, Adams E D, Sullivan N S, Pfeiffer L N, Baldwin K W and West K W 2008 Phys. Rev. B 77 075307
[5] De-Picciotto R, Reznikov M, Heiblum M, Umansky V, Bunin G and Mahalu D 1997 Nature 389 162
[6] Mourik V, Zuo K, Frolov S M, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2012 Science 336 1003
[7] Chang C Z, Zhang J, Feng X, Shen J, Zhang Z, Guo M, Li K, Ou Y, Wei P, Wang L L, Ji Z Q, Feng Y, Ji S, Chen X, Jia J, Dai X, Fang Z, Zhang S C, He K, Wang Y, Lu L, Ma X C and Xue Q K 2013 Science 340 167
[8] Li M, Li G, Cao L, Zhou X, Wang X, Jin C, Chiu C K, Pennycook S J, Wang Z and Gao H J 2022 Nature 606 890
[9] Arute F, Arya K, Babbush R, et al. 2019 Nature 574 505
[10] Song C, Xu K, Liu W, Yang C P, Zheng S B, Deng H, Xie Q, Huang K, Guo Q, Zhang L, Zhang P, Xu D, Zheng D, Zhu X, Wang H, Chen Y A, Lu C Y, Han S and Pan J W 2017 Phys. Rev. Lett. 119 180511
[11] Petta J R, Johnson A C, Taylor J M, Laird E A, Yacoby A, Lukin M D, Marcus C M, Hanson M P and Gossard A C 2005 Science 309 2180
[12] Devoret M H and Schoelkopf R J 2013 Science 339 1169
[13] Clarke J and Wilhelm F K 2008 Nature 453 1031
[14] Gifford W E and Longsworth R C 1966 Advances in Cryogenic Engineering Ed. Timmerhaus K D (Boston, MA: Springer US) pp. 171–179
[15] Gifford W E and McMahon H O 1959 Proceedings. 10th International Congress of Refrigeration Vol. 1
[16] Osheroff D D, Richardson R C and Lee D M 1972 Phys. Rev. Lett. 28 885
[17] Osheroff D D, Gully W J, Richardson R C and Lee D M 1972 Phys. Rev. Lett. 29 920
[18] Supplementary materials
[19] Saam W F and Laheurte J P 1971 Phys. Rev. A 4 1170
[20] Donnelly R J and Barenghi C F 1998 J. Phys. Chem. Ref. Data 27 1217
[21] Seligmann P, Edwards D O, Sarwinski R E and Tough J T 1969 Phys. Rev. 181 415
[22] Hsu W, Pines D and Aldrich C H 1985 Phys. Rev. B 32 7179
[23] Edwards D O and Pettersen M S 1992 J. Low Temp. Phys. 87 473
[24] Greywall D S 1983 Phys. Rev. B 27 2747
[25] Pobell F 2007 Matter and methods at low temperatures (Springer Science & Business Media)
[26] Folinsbee J T and Anderson A C 1973 Phys. Rev. Lett. 31 1580
[27] Folinsbee J T and Anderson A C 1974 J. Low Temp. Phys. 17 409
[28] Junker W R and Elbaum C 1975 Phys. Rev. Lett. 34 186
[29] Maris H J 1976 Phonon Propagation in Liquid Helium (Boston, MA: Springer US) pp. 77–86
[30] Lounasmaa O V 1974 Experimental principles and methods below 1 K (Academic Press)
[31] Uhlig K 1987 Cryogenics 27 454
[32] Kraus J, Uhlig E and Wiedemann W 1974 Cryogenics 14 29
[33] Zhao Z and Wang C 2019 Cryogenic Engineering and Technologies: Principles and Applications of Cryogen-Free Systems (CRC Press)
[34] Brunauer S, Emmett P H and Teller E 1938 J. Am. Chem. Soc. 60 309
[35] Berman R 1952 Proc. Phys. Soc. A 65 1029
[36] Uhlig K 2016 Cryogenics 79 35
[1] Fine and hyperfine structures of pionic helium atoms
Zhi-Da Bai(白志达), Zhen-Xiang Zhong(钟振祥), Zong-Chao Yan(严宗朝), and Ting-Yun Shi(史庭云). Chin. Phys. B, 2023, 32(2): 023601.
[2] Helium bubble formation and evolution in NiMo-Y2O3 alloy under He ion irradiation
Awen Liu(刘阿文), Hefei Huang(黄鹤飞), Jizhao Liu(刘继召), Zhenbo Zhu(朱振博), and Yan Li(李燕). Chin. Phys. B, 2022, 31(4): 046102.
[3] Spatial characteristics of nanosecond pulsed micro-discharges in atmospheric pressure He/H2O mixture by optical emission spectroscopy
Chuanjie Chen(陈传杰), Zhongqing Fang(方忠庆), Xiaofang Yang(杨晓芳), Yongsheng Fan(樊永胜), Feng Zhou(周锋), and Rugang Wang(王如刚). Chin. Phys. B, 2022, 31(2): 025204.
[4] Helium-hydrogen synergistic effects on swelling in in-situ multiple-ion beams irradiated steels
Haocheng Liu(刘昊成), Jia Huang(黄嘉), Liuxuan Cao(曹留煊), Yue Su(苏悦), Zhiying Gao(高智颖), Pengfei Ma(马鹏飞), Songqin Xia(夏松钦), Wei Ge(葛伟), Qingyuan Liu(刘清元), Shuang Zhao(赵双), Yugang Wang(王宇钢), Jinchi Huang(黄金池), Zhehui Zhou(周哲辉), Pengfei Zheng(郑鹏飞), and Chenxu Wang(王晨旭). Chin. Phys. B, 2021, 30(8): 086106.
[5] Influence of helium on the evolution of irradiation-induced defects in tungsten: An object kinetic Monte Carlo simulation
Peng-Wei Hou(侯鹏伟), Yu-Hao Li(李宇浩), Zhong-Zhu Li(李中柱), Li-Fang Wang(王丽芳), Xingyu Gao(高兴誉), Hong-Bo Zhou(周洪波), Haifeng Song(宋海峰), and Guang-Hong Lu(吕广宏). Chin. Phys. B, 2021, 30(8): 086108.
[6] In-situ TEM observation of the evolution of helium bubbles in Mo during He+ irradiation and post-irradiation annealing
Yi-Peng Li(李奕鹏), Guang Ran(冉广), Xin-Yi Liu(刘歆翌), Xi Qiu(邱玺), Qing Han(韩晴), Wen-Jie Li(李文杰), and Yi-Jia Guo(郭熠佳). Chin. Phys. B, 2021, 30(8): 086109.
[7] Evolution of helium bubbles in nickel-based alloy by post-implantation annealing
Rui Zhu(朱睿), Qin Zhou(周钦), Li Shi(史力), Li-Bin Sun(孙立斌), Xin-Xin Wu(吴莘馨), Sha-Sha Lv(吕沙沙), and Zheng-Cao Li(李正操). Chin. Phys. B, 2021, 30(8): 086102.
[8] HeTDSE: A GPU based program to solve the full-dimensional time-dependent Schrödinger equation for two-electron helium subjected to strong laser fields
Xi Zhao(赵曦), Gangtai Zhang(张刚台), Tingting Bai(白婷婷), Jun Wang(王俊), and Wei-Wei Yu(于伟威). Chin. Phys. B, 2021, 30(7): 073201.
[9] Efficient realization of daytime radiative cooling with hollow zigzag SiO2 metamaterials
Huawei Yao(姚华伟), Xiaoxia Wang(王晓霞), Huaiyuan Yin(殷怀远), Yuanlin Jia(贾渊琳), Yong Gao(高勇), Junqiao Wang(王俊俏), and Chunzhen Fan(范春珍). Chin. Phys. B, 2021, 30(6): 064214.
[10] First principles study of behavior of helium at Fe(110)-graphene interface
Yan-Mei Jing(荆艳梅) and Shao-Song Huang(黄绍松). Chin. Phys. B, 2021, 30(4): 046802.
[11] Size effect of He clusters on the interactions with self-interstitial tungsten atoms at different temperatures
Jinlong Wang(王金龙), Wenqiang Dang(党文强), Daping Liu(刘大平), Zhichao Guo(郭志超). Chin. Phys. B, 2020, 29(9): 093101.
[12] Laser-assisted XUV double ionization of helium atoms: Intensity dependence of joint angular distributions
Fengzheng Zhu(朱风筝), Genliang Li(黎根亮), Aihua Liu(刘爱华). Chin. Phys. B, 2020, 29(7): 073202.
[13] Simulation of helium supersonic molecular beam injection in tokamak plasma
Xue-Ke Wu(吴雪科), Zhan-Hui Wang(王占辉), Hui-Dong Li(李会东), Li-Ming Shi(石黎铭), Di Wan(万迪), Qun-Chao Fan(樊群超), Min Xu(许敏). Chin. Phys. B, 2020, 29(6): 065201.
[14] Thermal desorption characteristic of helium ion irradiated nickel-base alloy
Shasha Lv(吕沙沙), Rui Zhu(朱睿), Yumeng Zhao(赵雨梦), Mingyang Li(李明阳), Guojing Wang(王国景), Menglin Qiu(仇猛淋), Bin Liao(廖斌), Qingsong Hua(华青松), Jianping Cheng(程建平), Zhengcao Li(李正操). Chin. Phys. B, 2020, 29(4): 040704.
[15] Effects of helium irradiation dose and temperature on the damage evolution of Ti3SiC2 ceramic
Hua-Hai Shen(申华海), Xia Xiang(向霞), Hai-Bin Zhang(张海斌), Xiao-Song Zhou(周晓松), Hong-Xiang Deng(邓洪祥), Xiao-Tao Zu(祖小涛). Chin. Phys. B, 2019, 28(7): 076104.
No Suggested Reading articles found!