Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 034215    DOI: 10.1088/1674-1056/21/3/034215
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

A photonic crystal side-coupled waveguide based on a high-quality-factor resonator array

Cui Nai-Di(崔乃迪)a)b), Liang Jing-Qiu(梁静秋)a), Liang Zhong-Zhu(梁中翥)a), and Wang Wei-Biao(王维彪) a)†
a. State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
b. Graduate University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Based on the present coupled mode theory of the photonic crystal resonator array in this paper, we propose a novel side-coupled waveguide to achieve highly efficient coupling of photonic crystal devices. It is found that the coupling efficiency is sensitive to the interval, the total number and the quality factor of the resonator. Considering the coupling efficiency and the coupling region, we select five resonators with an interval of six lattice periods. By optimizing the structure parameters of the waveguide and resonator, the quality factors of the resonator can be modulated and the coupling efficiency of the side-coupled waveguide reaches 95.47% in theory. Compared with other coupling methods, the side-coupled waveguide can realize efficient coupling with a compact structure, a high level of integration and a low degree of operational difficulties.
Keywords:  side-coupled waveguide      photonic crystal      high-quality-factor cavity  
Received:  20 July 2011      Revised:  25 October 2011      Accepted manuscript online: 
PACS:  42.70.Qs (Photonic bandgap materials)  
  42.79.Gn (Optical waveguides and couplers)  
  42.82.Et (Waveguides, couplers, and arrays)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60877031).
Corresponding Authors:  Wang Wei-Biao,wangwbt@126.com     E-mail:  wangwbt@126.com

Cite this article: 

Cui Nai-Di(崔乃迪), Liang Jing-Qiu(梁静秋), Liang Zhong-Zhu(梁中翥), and Wang Wei-Biao(王维彪) A photonic crystal side-coupled waveguide based on a high-quality-factor resonator array 2012 Chin. Phys. B 21 034215

[1] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[2] John S 1987 Phys. Rev. lett. 58 2486
[3] Joannopoulos J D, Villeneuve P R and Fan S 1997 Nature 386 143
[4] Sugisaka J, Yamamoto N, Okano M, Komori K, Yatagai T and Itoh M 2008 Opt. Commun. 281 5788
[5] Lu H, Tian H P, Li C H and Ji Y F 2009 Acta Phys. Sin. 58 2049 (in Chinese)
[6] Zhang X, Tian H P and Ji Y F 2010 Opt. Commun. 283 1768
[7] Tada T, Poborchii V V and Kanayama T 2002 Micro. Eng. 63 259
[8] Liu L Y, Tian H P and Ji Y F 2011 Acta Phys. Sin. 60 104216 (in Chinese)
[9] Hu X Y, Jiang P, Ding C Y, Yang H and Gong Q H 2008 Nat. Photonics 2 185
[10] Hitoshi N, Suginoto Y, Kanamoto K, Ikeda N, Tanaka Y, Nakamura Y, Ohkouchi S, Watanabe Y, Inoue K, Ishikawa H and Asakawa K 2004 Opt. Express 12 6606
[11] Liu C Y 2009 Phys. Lett. A 373 3061
[12] Sharkawy A, Shi S and Prather D W 2001 Appl. Opt. 40 2247
[13] Faraon A, Waks E, Englund D, Fushman I and Vuvckovi'c J 2007 Appl. Phys. Lett. 90 073102
[14] Tong X, Han K, Shen X P, Wu Q H, Zhou F, Ge Y and Hu X J 2011 Acta Phys. Sin. 60 064217 (in Chinese)
[15] Yang W, Chen X S, Shi X Y and Lu W 2010 Physica B 405 1832
[16] Matsumoto T, Fujita S and Baba T 2005 Opt. Express 13 10768
[17] Takano H, Akahane Y, Asano T and Noda S 2004 Appl. Phys. Lett. 84 2226
[18] Fukaya N, Ohsaki D and Baba T 2000 Jpn. J. Appl. Phys. 39 2619
[19] Lin C Y, Wang X L, Chakravarty S, Lee B S, Lai W C and Chen R T 2010 Appl. Phys. Lett. 97 183302
[20] Barclay P E, Srinivasan K, Borselli M and Painter O 2004 Opt. Lett. 29 697
[21] Martijn de Sterke C, Dossou K B, White T P, Botten L C and McPhedran R C 2009 Opt. Express 17 17338
[22] Xu Y, Li Y, Lee R K and Yariv A 2000 Phys. Rev. E 62 7389
[23] Ren H L, Jiang C, Hu W S, Gao M Y and Wang J Y 2006 Opt. Express 14 2446
[24] Zhang Z Y and Qiu M 2005 Opt. Express 13 2596
[25] Manolatou C, Khan M J, Fan S H, Villeneuve P R and Hans H A 1999 IEEE J. Quantum Electron. 35 1322
[26] Nanaee M G and Young J F 2008 Opt. Express 16 20908
[27] Akahane Y, Asano T, Song B S and Noda S 2003 Nature 425 944
[28] Faraon A, Waks E, Englund D, Fushman I and Vuckovic J 2007 Appl. Phys. Lett. 90 073102
[29] Tada T, Poborchii V V and Kanayama T 2002 Microelectron Eng. 63 259
[30] Poborchii V V, Tada T and Kanayama T 2002 J. Appl. Opt. 91 3299
[1] Nonreciprocal wide-angle bidirectional absorber based on one-dimensional magnetized gyromagnetic photonic crystals
You-Ming Liu(刘又铭), Yuan-Kun Shi(史源坤), Ban-Fei Wan(万宝飞), Dan Zhang(张丹), and Hai-Feng Zhang(章海锋). Chin. Phys. B, 2023, 32(4): 044203.
[2] A 3-5 μm broadband YBCO high-temperature superconducting photonic crystal
Gang Liu(刘刚), Yuanhang Li(李远航), Baonan Jia(贾宝楠), Yongpan Gao(高永潘), Lihong Han(韩利红), Pengfei Lu(芦鹏飞), and Haizhi Song(宋海智). Chin. Phys. B, 2023, 32(3): 034213.
[3] Multi-band polarization switch based on magnetic fluid filled dual-core photonic crystal fiber
Lianzhen Zhang(张连震), Xuedian Zhang(张学典), Xiantong Yu(俞宪同), Xuejing Liu(刘学静), Jun Zhou(周军), Min Chang(常敏), Na Yang(杨娜), and Jia Du(杜嘉). Chin. Phys. B, 2023, 32(2): 024205.
[4] Method of measuring one-dimensional photonic crystal period-structure-film thickness based on Bloch surface wave enhanced Goos-Hänchen shift
Yao-Pu Lang(郎垚璞), Qing-Gang Liu(刘庆纲), Qi Wang(王奇), Xing-Lin Zhou(周兴林), and Guang-Yi Jia(贾光一). Chin. Phys. B, 2023, 32(1): 017802.
[5] Dual-channel tunable near-infrared absorption enhancement with graphene induced by coupled modes of topological interface states
Zeng-Ping Su(苏增平), Tong-Tong Wei(魏彤彤), and Yue-Ke Wang(王跃科). Chin. Phys. B, 2022, 31(8): 087804.
[6] High sensitivity dual core photonic crystal fiber sensor for simultaneous detection of two samples
Pibin Bing(邴丕彬), Guifang Wu(武桂芳), Qing Liu(刘庆), Zhongyang Li(李忠洋),Lian Tan(谭联), Hongtao Zhang(张红涛), and Jianquan Yao(姚建铨). Chin. Phys. B, 2022, 31(8): 084208.
[7] Design of a polarization splitter for an ultra-broadband dual-core photonic crystal fiber
Yongtao Li(李永涛), Jiesong Deng(邓洁松), Zhen Yang(阳圳), Hui Zou(邹辉), and Yuzhou Ma(马玉周). Chin. Phys. B, 2022, 31(5): 054215.
[8] Generation of mid-infrared supercontinuum by designing circular photonic crystal fiber
Ying Huang(黄颖), Hua Yang(杨华), and Yucheng Mao(毛雨澄). Chin. Phys. B, 2022, 31(5): 054211.
[9] High sensitivity plasmonic temperature sensor based on a side-polished photonic crystal fiber
Zhigang Gao(高治刚), Xili Jing(井西利), Yundong Liu(刘云东), Hailiang Chen(陈海良), and Shuguang Li(李曙光). Chin. Phys. B, 2022, 31(2): 024207.
[10] Topological photonic states in gyromagnetic photonic crystals: Physics, properties, and applications
Jianfeng Chen(陈剑锋) and Zhi-Yuan Li(李志远). Chin. Phys. B, 2022, 31(11): 114207.
[11] Bound states in the continuum in metal—dielectric photonic crystal with a birefringent defect
Hongzhen Tang(唐宏珍), Peng Hu(胡鹏), Da-Jian Cui(崔大健), Hong Xiang(向红), and Dezhuan Han(韩德专). Chin. Phys. B, 2022, 31(10): 104209.
[12] Momentum-space polarization fields in two-dimensional photonic-crystal slabs: Physics and applications
Wen-Zhe Liu(刘文哲), Lei Shi(石磊), Che-Ting Chan(陈子亭), and Jian Zi(资剑). Chin. Phys. B, 2022, 31(10): 104211.
[13] Mid-infrared supercontinuum and optical frequency comb generations in a multimode tellurite photonic crystal fiber
Xu Han(韩旭), Ying Han(韩颖), Chao Mei(梅超), Jing-Zhao Guan(管景昭), Yan Wang(王彦), Lin Gong(龚琳), Jin-Hui Yuan(苑金辉), and Chong-Xiu Yu(余重秀). Chin. Phys. B, 2021, 30(9): 094207.
[14] Dynamic modulation in graphene-integrated silicon photonic crystal nanocavity
Long-Pan Wang(汪陇盼), Cheng Ren(任承), De-Zhong Cao(曹德忠), Rui-Jun Lan(兰瑞君), and Feng Kang(康凤). Chin. Phys. B, 2021, 30(6): 064209.
[15] Generation of wideband tunable femtosecond laser based on nonlinear propagation of power-scaled mode-locked femtosecond laser pulses in photonic crystal fiber
Zhiguo Lv(吕志国) and Hao Teng(滕浩). Chin. Phys. B, 2021, 30(4): 044209.
No Suggested Reading articles found!