Investigation of spatial structure and sympathetic cooling in the 9Be+–40Ca+ bi-component Coulomb crystals
Min Li(李敏)1,2, Yong Zhang(张勇)1,2, Qian-Yu Zhang(张乾煜)1,2, Wen-Li Bai(白文丽)1,2, Sheng-Guo He(何胜国)1, Wen-Cui Peng(彭文翠)1,‡, and Xin Tong(童昕)1,†
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; 2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract We study the spatial structure and sympathetic cooling of the bi-component Coulomb crystal (CC), which consists of approximate 450 9Be+ ions and 450 40Ca+ ions with a mass ratio of 0.225 in a segmented linear ion trap. By two-dimensional imaging of the bi-component CC, the 9Be+ ions are found to be surrounded by the 40Ca+ ions in the radial direction with a separation ratio of ~ 2.0, and the axial length of the 9Be+ ions occupied area is much larger than that of the 40Ca+ ions occupied area. Combined with the previous experimental results, the structure of the 9Be+-40Ca+ CC shows the larger the difference in the mass-charge ratio, the larger the separation between the two species. The comparison of the fluorescence spectra of the 9Be+ ions in the bi-component CC and the pure CC indicates that the 9Be+ ions can be sympathetically cooled and stably localized by the laser-cooled 40Ca+ ions during the recording of the fluorescence spectrum.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 91636216), and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21020200).
Min Li(李敏), Yong Zhang(张勇), Qian-Yu Zhang(张乾煜), Wen-Li Bai(白文丽), Sheng-Guo He(何胜国), Wen-Cui Peng(彭文翠), and Xin Tong(童昕) Investigation of spatial structure and sympathetic cooling in the 9Be+–40Ca+ bi-component Coulomb crystals 2023 Chin. Phys. B 32 036402
[1] Johri S, Debnath S, Mocherla A, Singk A, Prakash A, Kim J and Kerenidis I 2021 Npj. Quantum. Inform7 122 [2] Hannegan J, Siverns J D, Cassell J and Quraishi Q 2021 Phys. Rev. A103 052433 [3] Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B and Leibrandt D R 2019 Phys. Rev. Lett.123 033201 [4] Zhang Q X, Wang Y R, Zhu C H, Wang Y X, Zhang X, Gao K Y and Zhang W 2020 Chin. Phys. B29 093203 [5] Micke P, Leopold T, King S A, Benkler E, Spieß L J, Schmöger L, Schwarz M, Crespo López-Urrutia J R and Schmidt P O 2020 Nature578 60 [6] Chu S, Hollberg L, Bjorkholm J E, Cable A and Ashkin A 1985 Phys. Rev. Lett.55 48 [7] Patra S, Germann M, Karr J Ph, Haidar M, Hilico L, Korobov V I, Cozijn F M J, Eikema K S E, Ubachs W and Koelemeij J C J 2020 Science369 1238 [8] Alighanbari S, Giri G S, Constantin F L, Korobov V I and Schiller S 2020 Nature581 152 [9] Willitsch S, Bell M T, Gingell A D and Softley T P 2008 Phys. Chem. Chem. Phys.10 7200 [10] Baker C J, Bertsche W, Capra A, et al. 2021 Nat. Commun.12 6139 [11] Jelenković B M, Newbury A S, Bollinger J J, Itano W M and Mitchell T B 2003 Phys. Rev. A67 063406 [12] Tang R L, Si R, Fei Z J, Fu X X, Lu Y Z, Brage T, Liu H T, Chen C Y and Ning C G 2021 Phys. Rev. A103 042817 [13] Zhang C B, Offenberg D, Roth B, Wilson M A and Schiller S 2007 Phys. Rev. A76 012719 [14] Hornekær L, Kjærgaard N, Thommesen A M and Drewsen M 2001 Phys. Rev. Lett.86 1994 [15] Mortensen A, Nielsen E, Matthey T and Drewsen M 2007 J. Phys. B: At. Mol. Opt. Phys.40 223 [16] Han J Z, Qin H R, Xin N C, Yu Y M, Dzuba V A, Zhang J W and Wang L J 2021 Appl. Phys. Lett.118 101103 [17] Miao S N, Qin H R, Xin N C, Chen Y T, Zhang J W and Wang L J 2022 comarXiv:2201.03377v1 [physics.atom-ph] [18] Zuo Y N, Han J Z, Zhang J W and Wang L J 2019 Appl. Phys. Lett.115 061103 [19] Li H X, Zhang Y, He S G and Tong X 2019 Chin. J. Phys.60 61 [20] Li H X, Li M, Zhang Q Y and Tong X 2019 Chin. Phys. Lett.36 073701 [21] Du L J, Chen T, Song H F, Chen S L, Li H X, Huang Y, Tong X, Gao K L and Guan H 2015 Chin. Phys. B24 083702 [22] Li M, Zhang Y, Zhang Q Y, Bai W L, He S G, Peng W C and Tong X 2022 J. Phys. B: At. Mol. Opt. Phys.55 035002 [23] Du L J, Song H F, Li H X, Chen S L, Chen T, Sun H Y, Huang Y, Tong X, Guan H and Gao K L 2015 Chin. Phys. B24 113703 [24] Dehmelt H 1967 Radiofrequency spectroscopy of stored ions. I: Storage (Seattle: University of Washington) pp. 53-72 [25] Du L J 2015 Research on dynamics of ion crystal in a linear radio-frequency trap (Ph.D Dissertation) (Wuhan: Chinese Academy of Sciences (in Chinese) pp. 36-40 [26] Tong X, Winney A H and Willitsch S 2010 Phys. Rev. Lett.105 143001 [27] Slattery W L, Doolen G D and DeWitt H E 1980 Phys. Rev. A21 2087 [28] Wineland D J 1987 Proceedings of the Cooling, Condensation and Storage of Hydrogen Cluster Ions Workshop''Ion Traps for Large Storage Capacity'', June 30-July 11, 1986, State of California, American, p. 181 [29] Hornekær L 2000 Single-and multi-species Coulomb ion crystals: Structures, dynamics and sympathetic cooling (Ph. D. Dissertation) (Denmark: University of Aarhus) (in English) pp. 106-113 [30] Turner L 1987 Phys. Fluids30 3196 [31] Kjaergaard N and Drewsen M 2003 Phys. Rev. Lett.91 095002 [32] Baba T and Waki I2002 Appl. Phys. B74 375 [33] Alighanbari S, Hansen M G, Korobov V I and Schiller S 2018 Nat. Phys.14 555 [34] Schmidt J, Louvradoux T, Heinrich J, Sillitoe N, Simpson M, Karr J P and Hilico L 2020 Phys. Rev. Appl.14 024053 [35] Zhong Z X, Tong X, Yan Z C and Shi T Y 2015 Chin. Phys. B24 053102
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.