Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 070501    DOI: 10.1088/1674-1056/ac4e0d
GENERAL Prev   Next  

Data-driven modeling of a four-dimensional stochastic projectile system

Yong Huang(黄勇)1 and Yang Li(李扬)2,†
1 School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China;
2 School of Automation, Nanjing University of Science and Technology, Nanjing 210094, China
Abstract  The dynamical modeling of projectile systems with sufficient accuracy is of great difficulty due to high-dimensional space and various perturbations. With the rapid development of data science and scientific tools of measurement recently, there are numerous data-driven methods devoted to discovering governing laws from data. In this work, a data-driven method is employed to perform the modeling of the projectile based on the Kramers-Moyal formulas. More specifically, the four-dimensional projectile system is assumed as an Itô stochastic differential equation. Then the least square method and sparse learning are applied to identify the drift coefficient and diffusion matrix from sample path data, which agree well with the real system. The effectiveness of the data-driven method demonstrates that it will become a powerful tool in extracting governing equations and predicting complex dynamical behaviors of the projectile.
Keywords:  data-driven modeling      machine learning      projectile systems      Kramers-Moyal formulas  
Received:  28 November 2021      Revised:  16 January 2022      Accepted manuscript online:  24 January 2022
PACS:  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
  05.10.Gg (Stochastic analysis methods)  
  05.40.-a (Fluctuation phenomena, random processes, noise, and Brownian motion)  
  02.30.Zz (Inverse problems)  
Fund: This research was supported by the Six Talent Peaks Project in Jiangsu Province, China (Grant No. JXQC-002).
Corresponding Authors:  Yang Li     E-mail:

Cite this article: 

Yong Huang(黄勇) and Yang Li(李扬) Data-driven modeling of a four-dimensional stochastic projectile system 2022 Chin. Phys. B 31 070501

[1] Brunton S L, Proctor J and Kutz J 2016 Proc. Natl. Acad. Sci. USA 113 3932
[2] Champion K, Lusch B, Kutz J N and Brunton S L 2019 Proc. Natl. Acad. Sci. USA 116 22445
[3] Schaeffer H, Caisch R, Hauck C D and Osher S 2013 Proc. Natl. Acad. Sci. USA 110 6634
[4] Rudy S, Alla A, Brunton S L and Kutz J N 2019 SIAM J. Appl. Dyn. Systems 18 643
[5] Lee S, Kooshkbaghi M, Spiliotis K, Siettos C I and Kevrekidis I G 2020 Chaos 30 013141
[6] Boninsegna L, Nüske F and Clementi C 2018 J. Chem. Phys. 148 241723
[7] Li Y and Duan J 2021 Physica D 417 132830
[8] Li Y and Duan J 2022 J. Stat. Phys. 186 30
[9] Williams M O, Kevrekidis I G and Rowley C 2015 J. Nonlinear Sci. 25 1307
[10] Klus S, Nüske F, Peitz S, Niemann J H, Clementi C and Schütte C 2020 Physica D 406 132416
[11] Lu Y and Duan J 2020 Chaos 30 093110
[12] Raissi M, Perdikaris P and Karniadakis G 2019 J. Comput. Phys. 378 686
[13] Chen X, Yang L, Duan J and Karniadakis G E 2021 SIAM J. Sci. Comput. 43 B811
[14] Lu Y, Li Y and Duan J 2021 arXiv:2108.12570[math.DS]
[15] Chen R T Q, Rubanova Y, Bettencourt J and Duvenaud D 2018 Advances in Neural Information Processing Systems (Curran Associates, Inc.) Vol. 31
[16] Wu D, Fu M and Duan J 2019 Chaos 29 093122
[17] Zhang Y, Duan J, Jin Y and Li Y 2020 Chaos 30 113112
[18] Li Y, Duan J and Liu X 2021 Phys. Rev. E 103 012124
[19] Dai M, Gao T, Lu Y, Zheng Y and Duan J 2020 Chaos 30 113124
[20] Han Z P 2008 Exterior Ballistics for projectiles (Beijing:Beijing University of Technology Press) (in Chinese)
[21] Duan J 2015 An Introduction to Stochastic Dynamics (New York:Cambridge University Press)
[22] M Reza Rahimi Tabar 2019 Analysis and Data-Based Reconstruction of Complex Nonlinear Dynamical Systems (Springer) 11
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] The coupled deep neural networks for coupling of the Stokes and Darcy-Forchheimer problems
Jing Yue(岳靖), Jian Li(李剑), Wen Zhang(张文), and Zhangxin Chen(陈掌星). Chin. Phys. B, 2023, 32(1): 010201.
[3] Variational quantum simulation of thermal statistical states on a superconducting quantum processer
Xue-Yi Guo(郭学仪), Shang-Shu Li(李尚书), Xiao Xiao(效骁), Zhong-Cheng Xiang(相忠诚), Zi-Yong Ge(葛自勇), He-Kang Li(李贺康), Peng-Tao Song(宋鹏涛), Yi Peng(彭益), Zhan Wang(王战), Kai Xu(许凯), Pan Zhang(张潘), Lei Wang(王磊), Dong-Ning Zheng(郑东宁), and Heng Fan(范桁). Chin. Phys. B, 2023, 32(1): 010307.
[4] Machine learning potential aided structure search for low-lying candidates of Au clusters
Tonghe Ying(应通和), Jianbao Zhu(朱健保), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(7): 078402.
[5] Quantum algorithm for neighborhood preserving embedding
Shi-Jie Pan(潘世杰), Lin-Chun Wan(万林春), Hai-Ling Liu(刘海玲), Yu-Sen Wu(吴宇森), Su-Juan Qin(秦素娟), Qiao-Yan Wen(温巧燕), and Fei Gao(高飞). Chin. Phys. B, 2022, 31(6): 060304.
[6] Evaluation of performance of machine learning methods in mining structure—property data of halide perovskite materials
Ruoting Zhao(赵若廷), Bangyu Xing(邢邦昱), Huimin Mu(穆慧敏), Yuhao Fu(付钰豪), and Lijun Zhang(张立军). Chin. Phys. B, 2022, 31(5): 056302.
[7] Quantum partial least squares regression algorithm for multiple correlation problem
Yan-Yan Hou(侯艳艳), Jian Li(李剑), Xiu-Bo Chen(陈秀波), and Yuan Tian(田源). Chin. Phys. B, 2022, 31(3): 030304.
[8] Dynamical learning of non-Markovian quantum dynamics
Jintao Yang(杨锦涛), Junpeng Cao(曹俊鹏), and Wen-Li Yang(杨文力). Chin. Phys. B, 2022, 31(1): 010314.
[9] Quantitative structure-plasticity relationship in metallic glass: A machine learning study
Yicheng Wu(吴义成), Bin Xu(徐斌), Yitao Sun(孙奕韬), and Pengfei Guan(管鹏飞). Chin. Phys. B, 2021, 30(5): 057103.
[10] Quantum annealing for semi-supervised learning
Yu-Lin Zheng(郑玉鳞), Wen Zhang(张文), Cheng Zhou(周诚), and Wei Geng(耿巍). Chin. Phys. B, 2021, 30(4): 040306.
[11] Restricted Boltzmann machine: Recent advances and mean-field theory
Aurélien Decelle, Cyril Furtlehner. Chin. Phys. B, 2021, 30(4): 040202.
[12] Stability analysis of hydro-turbine governing system based on machine learning
Yuansheng Chen(陈元盛) and Fei Tong(仝飞). Chin. Phys. B, 2021, 30(12): 120509.
[13] Fundamental band gap and alignment of two-dimensional semiconductors explored by machine learning
Zhen Zhu(朱震), Baojuan Dong(董宝娟), Huaihong Guo(郭怀红), Teng Yang(杨腾), Zhidong Zhang(张志东). Chin. Phys. B, 2020, 29(4): 046101.
[14] Machine learning in materials design: Algorithm and application
Zhilong Song(宋志龙), Xiwen Chen(陈曦雯), Fanbin Meng(孟繁斌), Guanjian Cheng(程观剑), Chen Wang(王陈), Zhongti Sun(孙中体), and Wan-Jian Yin(尹万健). Chin. Phys. B, 2020, 29(11): 116103.
[15] Computational prediction of RNA tertiary structures using machine learning methods
Bin Huang(黄斌), Yuanyang Du(杜渊洋), Shuai Zhang(张帅), Wenfei Li(李文飞), Jun Wang (王骏), and Jian Zhang(张建)†. Chin. Phys. B, 2020, 29(10): 108704.
No Suggested Reading articles found!