Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(7): 073701    DOI: 10.1088/1674-1056/abf91f
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Simulation and experiment of the cooling effect of trapped ion by pulsed laser

Chang-Da-Ren Fang(方长达人)1,2,3, Yao Huang(黄垚)1,2, Hua Guan(管桦)1,2, Yuan Qian(钱源)1,2,3, and Ke-Lin Gao(高克林)1,2,†
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China;
2 Key Laboratory of Atomic Frequency Standards, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  We investigate the process of pulsed laser cooling using a self-constructed molecular dynamics simulation (MD-Simulation) program. We simulate the Doppler cooling process and pulsed laser Doppler cooling process of a single 40Ca+ ion, and the comparison with the experimental results shows that this self-constructed MD-Simulation program works well in the weak laser intensity situation. Furthermore, we analyze the pulsed laser Doppler cooling process of a single 27Al+ ion. This program can be used to analyze the molecular dynamic process of various situations of Doppler cooling in an ion trap, which could give predictions and experimental guidance.
Keywords:  doppler cooling      pulsed laser cooling      molecular dynamics simulation  
Received:  08 March 2021      Revised:  13 April 2021      Accepted manuscript online:  19 April 2021
PACS:  37.10.Vz (Mechanical effects of light on atoms, molecules, and ions)  
  87.10.Tf (Molecular dynamics simulation)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2017YFA0304401), the National Development Project for Major Scientific Research Facility, China (Grant No. ZDYZ2012-2), the National Natural Science Foundation of China (Grant Nos. 11774388 and 11634013), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB21030100), the CAS Youth Innovation Promotion Association (Grant Nos. 2018364 and Y201963), and the K. C. Wong Education Foundation (Grant No. GJTD-2019-15).
Corresponding Authors:  Ke-Lin Gao     E-mail:  klgao@apm.ac.cn

Cite this article: 

Chang-Da-Ren Fang(方长达人), Yao Huang(黄垚), Hua Guan(管桦), Yuan Qian(钱源), and Ke-Lin Gao(高克林) Simulation and experiment of the cooling effect of trapped ion by pulsed laser 2021 Chin. Phys. B 30 073701

[1] Chou C W, Hume D B, Rosenband T and Wineland D J 2010 Science 329 1630
[2] Ludlow A D, Boyd M M, Ye J, Peik E and Schmidt P O 2015 Rev. Mod. Phys. 87 637
[3] Levine J 2008 Metrologia 45 S162
[4] Pruttivarasin T, Ramm M, Porsev S G, Tupitsyn, Ⅱ, Safronova M S, Hohensee M A and Haffner H 2015 Nature 517 592
[5] Lea S N 2007 Rep. Prog. Phys. 70 1473
[6] Arvanitaki A, Huang J and Van Tilburg K 2015 Phys. Rev. D 91 015015
[7] Derevianko A and Pospelov M 2014 Nat. Phys. 10 933
[8] Stadnik Y V and Flambaum V V 2015 Phys. Rev. Lett. 114 161301
[9] Reynaud S, Lamine B, Duchayne L, Wolf P and Jaekel M T 2008 Phys. Rev. D 77 122003
[10] Derevianko A, Dzuba V A and Flambaum V V 2012 Phys. Rev. Lett. 109 180801
[11] Kozlov M G, Safronova M S, Crespo López-Urrutia J R and Schmidt P O 2018 Rev. Mod. Phys. 90 045005
[12] Peik E and Okhapkin M 2015 Comptes Rendus Physique 16 516
[13] Allison T K, Cingöz A, Benko C, Yost D C, Ruehl A, Fermann M, Hartl I and Ye J 2013 EPJ Web of Conferences 41 11006
[14] Benko C, Allison T K, Cingöz A, Hua L, Labaye F, Yost D C and Ye J 2014 Nat. Photon. 8 530
[15] Porat G, Heyl C M, Schoun S B, Benko C, Dörre N, Corwin K L and Ye J 2018 Nat. Photon. 12 387
[16] Zhang C, Schoun S B, Heyl C M, Porat G, Gaarde M B and Ye J 2020 Phys. Rev. Lett. 125 093902
[17] Brewer S M, Chen J S, Hankin A M, Clements E R, Chou C W, Wineland D J, Hume D B and Leibrandt D R 2019 Phys. Rev. Lett. 123 033201
[18] Schmidt P O 2005 Science 309 749
[19] Zhang J, Deng K, Luo J and Lu Z H 2017 Chin. Phys. Lett. 34 050601
[20] Li J J, Zhang F F, Wang Z M, Xu Y C, Guo C, Zong N, Zhang S J, Yang F, Gao H W, Yuan L, Xu F L, Liu Y, Bo Y, Cui D F, Peng Q J and Xu Z Y 2018 IEEE J. Sel. Top. Quantum Electron. 1600106 6
[21] Li J J, Zhang F F, Wang Z M, Xu Y C, Liu X C, Zong N, Zhang S J, Xu F L, Yang F, Yuan L, Kou Y, Bo Y, Cui D F, Peng Q J, Wang X Y, Liu L J, Chen C T and Xu Z Y 2018 Opt. Lett. 43 2563
[22] Molmer K 1991 Phys. Rev. Lett. 66 2301
[23] Blinov B B, Kohn R N, Madsen M J, Maunz P, Moehring D L and Monroe C 2006 J. Opt. Soc. Am. B 23 1170
[24] Wakui K, Hayasaka K and Ido T 2014 Appl. Phys. B 117 957
[25] Davila-Rodriguez J, Ozawa A, Hänsch T W and Udem T 2016 Phys. Rev. Lett. 116 043002
[26] Du L J, Song H F, Li H X, Chen S L, Chen T, Sun H Y, Huang Y, Tong X, Guan H and Gao K L 2015 Chin. Phys. B 24 113703
[27] Du L J, Song H F, Chen S L, Huang Y, Tong X, Guan H and Gao K L 2018 Chin. Phys. B 27 043701
[28] Metcalf H J 1999 Laser Cooling and Trapping (New York: Springer) pp. 25, 32
[29] Verlet L 1967 Phys. Rev. 159 98
[30] Verlet L 1968 Phys. Rev. 165 201
[31] Zhang M Q and Skeel R D 1995 J. Comput. Chem. 16 365
[32] Chen J S 2017 Ticking near the Zero-Point Energy towards 1×10-18 Accuracy in Al+ Optical Clocks (PhD Dessertation) (Boulder: University of Colorado) pp. 15-17
[33] Roos C 2000 Controlling the Quantum State of Trapped Ions (PhD Dessertation) (Innsbruck: Universiät Innsbruck) pp. 26, 117, 118
[1] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[2] Adsorption dynamics of double-stranded DNA on a graphene oxide surface with both large unoxidized and oxidized regions
Mengjiao Wu(吴梦娇), Huishu Ma(马慧姝), Haiping Fang(方海平), Li Yang(阳丽), and Xiaoling Lei(雷晓玲). Chin. Phys. B, 2023, 32(1): 018701.
[3] Effect of spatial heterogeneity on level of rejuvenation in Ni80P20 metallic glass
Tzu-Chia Chen, Mahyuddin KM Nasution, Abdullah Hasan Jabbar, Sarah Jawad Shoja, Waluyo Adi Siswanto, Sigiet Haryo Pranoto, Dmitry Bokov, Rustem Magizov, Yasser Fakri Mustafa, A. Surendar, Rustem Zalilov, Alexandr Sviderskiy, Alla Vorobeva, Dmitry Vorobyev, and Ahmed Alkhayyat. Chin. Phys. B, 2022, 31(9): 096401.
[4] Strengthening and softening in gradient nanotwinned FCC metallic multilayers
Yuanyuan Tian(田圆圆), Gangjie Luo(罗港杰), Qihong Fang(方棋洪), Jia Li(李甲), and Jing Peng(彭静). Chin. Phys. B, 2022, 31(6): 066204.
[5] Investigation of the structural and dynamic basis of kinesin dissociation from microtubule by atomistic molecular dynamics simulations
Jian-Gang Wang(王建港), Xiao-Xuan Shi(史晓璇), Yu-Ru Liu(刘玉如), Peng-Ye Wang(王鹏业),Hong Chen(陈洪), and Ping Xie(谢平). Chin. Phys. B, 2022, 31(5): 058702.
[6] Evolution of defects and deformation mechanisms in different tensile directions of solidified lamellar Ti-Al alloy
Yutao Liu(刘玉涛), Tinghong Gao(高廷红), Yue Gao(高越), Lianxin Li(李连欣), Min Tan(谭敏), Quan Xie(谢泉), Qian Chen(陈茜), Zean Tian(田泽安), Yongchao Liang(梁永超), and Bei Wang(王蓓). Chin. Phys. B, 2022, 31(4): 046105.
[7] Evaluation on performance of MM/PBSA in nucleic acid-protein systems
Yuan-Qiang Chen(陈远强), Yan-Jing Sheng(盛艳静), Hong-Ming Ding(丁泓铭), and Yu-Qiang Ma(马余强). Chin. Phys. B, 2022, 31(4): 048701.
[8] Molecular dynamics simulations of A-DNA in bivalent metal ions salt solution
Jingjing Xue(薛晶晶), Xinpeng Li(李新朋), Rongri Tan(谈荣日), and Wenjun Zong(宗文军). Chin. Phys. B, 2022, 31(4): 048702.
[9] Molecular dynamics simulations on the wet/dry self-latching and electric fields triggered wet/dry transitions between nanosheets: A non-volatile memory nanostructure
Jianzhuo Zhu(朱键卓), Xinyu Zhang(张鑫宇), Xingyuan Li(李兴元), and Qiuming Peng(彭秋明). Chin. Phys. B, 2022, 31(2): 024703.
[10] Comparison of formation and evolution of radiation-induced defects in pure Ni and Ni-Co-Fe medium-entropy alloy
Lin Lang(稂林), Huiqiu Deng(邓辉球), Jiayou Tao(陶家友), Tengfei Yang(杨腾飞), Yeping Lin(林也平), and Wangyu Hu(胡望宇). Chin. Phys. B, 2022, 31(12): 126102.
[11] Learning physical states of bulk crystalline materials from atomic trajectories in molecular dynamics simulation
Tian-Shou Liang(梁添寿), Peng-Peng Shi(时朋朋), San-Qing Su(苏三庆), and Zhi Zeng(曾志). Chin. Phys. B, 2022, 31(12): 126402.
[12] Mechanism of microweld formation and breakage during Cu-Cu wire bonding investigated by molecular dynamics simulation
Beikang Gu(顾倍康), Shengnan Shen(申胜男), and Hui Li(李辉). Chin. Phys. B, 2022, 31(1): 016101.
[13] Structure-based simulations complemented by conventional all-atom simulations to provide new insights into the folding dynamics of human telomeric G-quadruplex
Yun-Qiang Bian(边运强), Feng Song(宋峰), Zan-Xia Cao(曹赞霞), Jia-Feng Yu(于家峰), and Ji-Hua Wang(王吉华). Chin. Phys. B, 2021, 30(7): 078702.
[14] Non-monotonic temperature evolution of nonlocal structure-dynamics correlation in CuZr glass-forming liquids
W J Jiang(江文杰) and M Z Li(李茂枝). Chin. Phys. B, 2021, 30(7): 076102.
[15] Coarse-grained simulations on interactions between spectrins and phase-separated lipid bilayers
Xuegui Lin(林雪桂), Xiaojie Chen(陈晓洁), and Qing Liang(梁清). Chin. Phys. B, 2021, 30(6): 068701.
No Suggested Reading articles found!