Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(2): 027803    DOI: 10.1088/1674-1056/21/2/027803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Temperature dependences of Raman scattering in different types of GaN epilayers

Xue Xiao-Yong(薛晓咏), Xu Sheng-Rui(许晟瑞), Zhang Jin-Cheng(张进成), Lin Zhi-Yu(林志宇), Ma Jun-Cai(马俊彩), Liu Zi-Yang(刘子扬), Xue Jun-Shuai(薛军帅), and Hao Yue(郝跃)
Key Laboratory of Wide Band-Gap Semiconductor Technology, School of Microelectronics, Xidian University, Xi醤 710071, China
Abstract  First-order Raman scatterings of hexagonal GaN layers deposited by the hydride vapour phase epitaxy and by metal-organic chemical vapour deposition on SiC and sapphire substrates are studied in a temperature range between 303 K and 503 K. The temperature dependences of two GaN Raman modes (A1 (LO) and E2 (high)) are obtained. We focus our attention on the temperature dependence of E2 (high) mode and find that for different types of GaN epilayers their temperature dependences are somewhat different. We compare their differences and give them an explanation. The simplified formulas we obtained are in good accordance with experiment data. The results can be used to determine the temperature of a GaN sample.
Keywords:  GaN      Raman scattering      temperature dependence  
Received:  29 June 2011      Revised:  22 July 2011      Accepted manuscript online: 
PACS:  78.55.Cr (III-V semiconductors)  
  81.15.Kk (Vapor phase epitaxy; growth from vapor phase)  
Fund: Project supported by the National Key Science & Technology Special Project (Grant No. 2008ZX01002-002), the Fundamental Research Funds for the Central Universities (Grant No. JY10000904009), and the Major Program and State Key Program of National Natural Science Foundation of China (Grant Nos. 60890191 and 60736033).
Corresponding Authors:  Xue Xiao-Yong,isaac7777777@163.com     E-mail:  isaac7777777@163.com

Cite this article: 

Xue Xiao-Yong(薛晓咏), Xu Sheng-Rui(许晟瑞), Zhang Jin-Cheng(张进成), Lin Zhi-Yu(林志宇), Ma Jun-Cai(马俊彩), Liu Zi-Yang(刘子扬), Xue Jun-Shuai(薛军帅), and Hao Yue(郝跃) Temperature dependences of Raman scattering in different types of GaN epilayers 2012 Chin. Phys. B 21 027803

[1] Xu S R, Hao Y, Zhang J C, Zhou X W, Cao Y R, Ou X X, Mao W, Du D C and Wang H 2010 Chin. Phys. B 19 107204
[2] Zhang J F, Xu S R, Zhang J C and Hao Y 2011 Chin. Phys. B 20 057801
[3] Elhamri S, Saxler A, Mitchel W C, Berney R, Elsass C, Smorchkova Y, Mishra U K, Speck J S, Chowdhury U and Dupuis R D 2003 J. Appl. Phys. 93 1079
[4] Higashiwaki M, Matsui T and Mimura T 2006 IEEE Electron Device Lett. 27 16
[5] Quan S, Hao Y, Ma X H and Yu H Y 2011 Chin. Phys. B 20 018101
[6] Thomas E Beechem III 2008 Ph. D. dissertation “Metrology of GaN Electronics using Micro-Raman Spectroscopy” Atlanta Georgia Institute of Technology, USA
[7] Link A, Bitzer K, Limmer W, Sauer R, Kirchner C, Schwegler V, Kamp M, Ebling D G and Benz K W 1999 J. Appl. Phys. 86 6256
[8] Giehler M, Ramsteiner M and Waltereit P 2001 J. Appl. Phys. 89 3634
[9] Li W S, Shen Z X, Feng Z C and Chua S J 2000 J. Appl. Phys. 87 3332
[10] Song D Y, Basavaraj M, Nikishin S A and Holtz M 2006 J. Appl. Phys. 100 3332
[11] Ahmad I, Kasisomayajula V, Song D Y, Tian L, Berg J M and Holtz M 2006 J. Appl. Phys. 100 113718
[12] Harima H 2002 J. Phys.: Condens. Matter 14 R967
[13] Hushur A, Manghnani M H and Narayan J 2009 J. Appl. Phys. 106 054317
[14] Irmer G, Wenzel M and Monecke J 1996 Phys. Status Solidi B 195 85
[15] Menéndez J and Cardona M 1984 Phys. Rev. B 29 2051
[16] Balkanski M, Wallis R F and Haro E 1983 Phys. Rev. B 28 1928
[17] Perlin P, Carillon C J, Itie J P, Miguel A S, Grzegory I and Polian A 1992 Phys. Rev. B 45 83
[18] Kim K, Lambrecht W R L and Segall B 1996 Phys. Rev. B 53 16310
[19] Miwa K and Fukumoto A 1993 Phys. Rev. B 48 7897
[20] Kisielowski C, Krüger J, Ruvimov S, Suski T, Ager III J W, Jones E, Weber Z L, Rubin M and Weber E R 1996 Phys. Rev. B 54 17745
[21] Morkoc H, Strite S, Gao G B, Lin M E, Sverdlov B and Burns M 1994 J. Appl. Phys. 76 1363
[22] Lladó E A, Dolmanan S B, Lin V K X, Teo S L, Dadgar A, Krost A and Tripathy S 2010 J. Appl. Phys. 108 114501
[1] Low-resistance ohmic contacts on InAlN/GaN heterostructures with MOCVD-regrown n+-InGaN and mask-free regrowth process
Jingshu Guo(郭静姝), Jiejie Zhu(祝杰杰), Siyu Liu(刘思雨), Jielong Liu(刘捷龙), Jiahao Xu(徐佳豪), Weiwei Chen(陈伟伟), Yuwei Zhou(周雨威), Xu Zhao(赵旭), Minhan Mi(宓珉瀚), Mei Yang(杨眉), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2023, 32(3): 037303.
[2] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[3] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[4] Demonstration and modeling of unipolar-carrier-conduction GaN Schottky-pn junction diode with low turn-on voltage
Lijian Guo(郭力健), Weizong Xu(徐尉宗), Qi Wei(位祺), Xinghua Liu(刘兴华), Tianyi Li(李天义), Dong Zhou(周东), Fangfang Ren(任芳芳), Dunjun Chen(陈敦军), Rong Zhang(张荣), Youdou Zheng(郑有炓), and Hai Lu(陆海). Chin. Phys. B, 2023, 32(2): 027302.
[5] Achieving highly-efficient H2S gas sensor by flower-like SnO2-SnO/porous GaN heterojunction
Zeng Liu(刘增), Ling Du(都灵), Shao-Hui Zhang(张少辉), Ang Bian(边昂), Jun-Peng Fang(方君鹏), Chen-Yang Xing(邢晨阳), Shan Li(李山), Jin-Cheng Tang(汤谨诚), Yu-Feng Guo(郭宇锋), and Wei-Hua Tang(唐为华). Chin. Phys. B, 2023, 32(2): 020701.
[6] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[7] Heat transport properties within living biological tissues with temperature-dependent thermal properties
Ying-Ze Wang(王颖泽), Xiao-Yu Lu(陆晓宇), and Dong Liu(刘栋). Chin. Phys. B, 2023, 32(1): 014401.
[8] Design optimization of high breakdown voltage vertical GaN junction barrier Schottky diode with high-K/low-K compound dielectric structure
Kuiyuan Tian(田魁元), Yong Liu(刘勇), Jiangfeng Du(杜江锋), and Qi Yu(于奇). Chin. Phys. B, 2023, 32(1): 017306.
[9] Bottom-up approaches to microLEDs emitting red, green and blue light based on GaN nanowires and relaxed InGaN platelets
Zhaoxia Bi(毕朝霞), Anders Gustafsson, and Lars Samuelson. Chin. Phys. B, 2023, 32(1): 018103.
[10] Physical analysis of normally-off ALD Al2O3/GaN MOSFET with different substrates using self-terminating thermal oxidation-assisted wet etching technique
Cheng-Yu Huang(黄成玉), Jin-Yan Wang(王金延), Bin Zhang(张斌), Zhen Fu(付振), Fang Liu(刘芳), Mao-Jun Wang(王茂俊), Meng-Jun Li(李梦军), Xin Wang(王鑫), Chen Wang(汪晨), Jia-Yin He(何佳音), and Yan-Dong He(何燕冬). Chin. Phys. B, 2022, 31(9): 097401.
[11] Liquid-phase synthesis of Li2S and Li3PS4 with lithium-based organic solutions
Jieru Xu(许洁茹), Qiuchen Wang(王秋辰), Wenlin Yan(闫汶琳), Liquan Chen(陈立泉), Hong Li(李泓), and Fan Wu(吴凡). Chin. Phys. B, 2022, 31(9): 098203.
[12] Mottness, phase string, and high-Tc superconductivity
Jing-Yu Zhao(赵靖宇) and Zheng-Yu Weng(翁征宇). Chin. Phys. B, 2022, 31(8): 087104.
[13] Inertial focusing and rotating characteristics of elliptical and rectangular particle pairs in channel flow
Pei-Feng Lin(林培锋), Xiao Hu(胡箫), and Jian-Zhong Lin(林建忠). Chin. Phys. B, 2022, 31(8): 080501.
[14] Effect of surface plasmon coupling with radiating dipole on the polarization characteristics of AlGaN-based light-emitting diodes
Yi Li(李毅), Mei Ge(葛梅), Meiyu Wang(王美玉), Youhua Zhu(朱友华), and Xinglong Guo(郭兴龙). Chin. Phys. B, 2022, 31(7): 077801.
[15] SERS activity of carbon nanotubes modified by silver nanoparticles with different particle sizes
Xiao-Lei Zhang(张晓蕾), Jie Zhang(张洁), Yuan Luo(罗元), and Jia Ran(冉佳). Chin. Phys. B, 2022, 31(7): 077401.
No Suggested Reading articles found!