Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(9): 097501    DOI: 10.1088/1674-1056/20/9/097501
RAPID COMMUNICATION Prev   Next  

Magnetic phase transitions and magnetocaloric effect in the Fe-doped MnNiGe alloys

Zhang Cheng-Liang(张成亮)a), Wang Dun-Hui(王敦辉)b), Chen Jian(陈健)a),Wang Ting-Zhi(王廷志)a), Xie Guang-Xi(谢广喜)a), and Zhu Chun(朱纯)a)
a School of Science, Jiangnan University, Wuxi 214122, China; b National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093, China
Abstract  The magnetic phase transition and magnetocaloric effects in Fe-doped MnNiGe alloys are investigated. The substitution of Fe for Ni decreases the structural transition temperature remarkably, resulting in the magnetostructural transition occurring between antiferromagnetic and ferromagnetic states in MnNi1 - xFexGe alloy. Owing to the enhanced ferromagnetic coupling induced by the substitution of Fe, metamagnetic behaviour is also observed in TiNiSi-type phase of MnNi1 - xFexGe alloys at temperature below the structural transition temperature.
Keywords:  magnetostructural transition      metamagnetic      magnetocaloric effect  
Received:  23 March 2011      Revised:  23 April 2011      Accepted manuscript online: 
PACS:  75.30.Kz (Magnetic phase boundaries (including classical and quantum magnetic transitions, metamagnetism, etc.))  
  75.30.Sg (Magnetocaloric effect, magnetic cooling)  
  75.50.Ee (Antiferromagnetics)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  

Cite this article: 

Zhang Cheng-Liang(张成亮), Wang Dun-Hui(王敦辉), Chen Jian(陈健), Wang Ting-Zhi(王廷志), Xie Guang-Xi(谢广喜), and Zhu Chun(朱纯) Magnetic phase transitions and magnetocaloric effect in the Fe-doped MnNiGe alloys 2011 Chin. Phys. B 20 097501

[1] Pecharsky V K and Gschneidner Jr K A 1997 Phys. Rev. Lett. 78 4494
[2] Hu F X, Shen B G, Sun J R, Cheng Z H, Rao G H and Zhang X X 2001 Appl. Phys. Lett. 78 3675
[3] Tegus O, Brück E, Buschow K H J and de Boer F R 2002 Nature 415 150
[4] Yu S Y, Liu Z H, Liu G D, Chen J L, Cao Z X, Wu G H, Zhang B and Zhang X X 2006 Appl. Phys. Lett. 89 162503
[5] Kainuma R, Imano Y, Ito W, Sutou Y, Morito H, Okamoto S, Kitakami O, Oikawa K, Fujita A, Kanomata T and Ishida K 2006 Nature 439 957
[6] Shen J, Gao B, Yan L Q, Li Y X, Zhang H W, Hu F X and Sun J R 2007 Chin. Phys. 16 3848
[7] Zhang C L, Wang D H, Cao Q Q, Xuan H C, Ma S C and Du Y W 2010 Chin. Phys. B 19 037501
[8] Trung N T, Biharie V, Zhang L, Caron L, Buschow K H J and Brück E 2010 Appl. Phys. Lett. 96 162507
[9] Xuan H C, Xie K X, Wang D H, Han Z D, Zhang C L, Gu B X and Du Y W 2008 Appl. Phys. Lett. 92 242506
[10] Zhang C L, Wang D H, Cao Q Q, Han Z D, Xuan H C and Du Y W 2008 Appl. Phys. Lett. 93 122505
[11] Liu E K, Zhu W, Feng L, Chen J L, Wang W H, Wu G H, Liu H Y, Meng F B, Luo H Z and Li Y X 2010 EuroPhys. Lett. 91 17003
[12] Trung N T, Zhang L, Caron L, Buschow K H J and Brück E 2010 Appl. Phys. Lett. 96 172504
[13] Ba.zela W, Szytula A, Todorovi'c T, Tomkowicz Z and Zieba A 1976 Phys. Stat. Sol. (a) 38 721
[14] Anzai S and Ozawa K 1978 Phys. Rev. B 18
[15] Szytula A, Tomkowicz Z, Ba.zela W and Todorovi'c J 1977 Physica 86-88B 393
[16] Zhang C L, Wang D H, Cao Q Q, Ma S C, Xuan H C and Du Y W 2010 J. Phys. D: Appl. Phys. 43 205003
[17] Szytula A, Pedziwiatr A T and Tomkowicz Z 1981 J. Magn. Magn. Mater. 25 176
[18] Liu E K, Li G J, Zhu W, Feng L, Chen J L, Wu G H and Wang W H arXiv:1006.2907v1
[19] Fjellvaag H and Andresen A F 1985 J. Magn. Magn. Mater. 50 291
[20] Beckman O and Lundgren L 1991 Handbook of Magnetic Materials (New York: Elsevier) 6 p. 223
[21] Niziol S, Bombik A, Ba.zela W, Szytula A and Fruchart D 1982 J. Magn. Magn. Mater. 27 281
[1] Magnetocaloric properties of phenolic resin bonded La(Fe,Si)13-based plates and its use in a hybrid magnetic refrigerator
Shao-Shan Xu(徐少山), Qi Fu(付琪), Yi-Fan Zhou(周益帆), Ling Peng(彭铃), Xin-Qiang Gao(高新强), Zhen-Xing Li(李振兴), Mao-Qiong Gong(公茂琼), Xue-Qiang Dong(董学强), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027502.
[2] Giant low-field cryogenic magnetocaloric effect in polycrystalline LiErF4 compound
Zhaojun Mo(莫兆军), Jianjian Gong(巩建建), Huicai Xie(谢慧财), Lei Zhang(张磊), Qi Fu(付琪), Xinqiang Gao(高新强), Zhenxing Li(李振兴), and Jun Shen(沈俊). Chin. Phys. B, 2023, 32(2): 027503.
[3] Magnetocaloric properties and Griffiths phase of ferrimagnetic cobaltite CaBaCo4O7
Tina Raoufi, Jincheng He(何金城), Binbin Wang(王彬彬), Enke Liu(刘恩克), and Young Sun(孙阳). Chin. Phys. B, 2023, 32(1): 017504.
[4] Tailored martensitic transformation and enhanced magnetocaloric effect in all-d-metal Ni35Co15Mn33Fe2Ti15 alloy ribbons
Yong Li(李勇), Liang Qin(覃亮), Hongguo Zhang(张红国), and Lingwei Li(李领伟). Chin. Phys. B, 2022, 31(8): 087103.
[5] Large inverse and normal magnetocaloric effects in HoBi compound with nonhysteretic first-order phase transition
Yan Zhang(张艳), You-Guo Shi(石友国), Li-Chen Wang(王利晨), Xin-Qi Zheng(郑新奇), Jun Liu(刘俊), Ya-Xu Jin(金亚旭), Ke-Wei Zhang(张克维), Hong-Xia Liu(刘虹霞), Shuo-Tong Zong(宗朔通), Zhi-Gang Sun(孙志刚), Ji-Fan Hu(胡季帆), Tong-Yun Tong(赵同云), and Bao-Gen Shen(沈保根). Chin. Phys. B, 2022, 31(7): 077501.
[6] Magnetic and magnetocaloric effect in a stuffed honeycomb polycrystalline antiferromagnet GdInO3
Yao-Dong Wu(吴耀东), Wei-Wei Duan(段薇薇), Qiu-Yue Li(李秋月), Yong-Liang Qin(秦永亮),Zhen-Fa Zi(訾振发), and Jin Tang(汤进). Chin. Phys. B, 2022, 31(6): 067501.
[7] Magnetic properties and magnetocaloric effects of Tm1-xErxCuAl (x = 0.25, 0.5, and 0.75) compounds
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(12): 127501.
[8] Magnetic properties and magnetocaloric effect in RE55Co30Al10Si5 (RE = Er and Tm) amorphous ribbons
Hao Sun(孙浩), Junfeng Wang(王俊峰), Lu Tian(田路), Jianjian Gong(巩建建), Zhaojun Mo(莫兆军), Jun Shen(沈俊), and Baogen Shen(沈保根). Chin. Phys. B, 2022, 31(11): 117503.
[9] Magnetism and giant magnetocaloric effect in rare-earth-based compounds R3BWO9 (R = Gd, Dy, Ho)
Lu-Ling Li(李炉领), Xiao-Yu Yue(岳小宇), Wen-Jing Zhang(张文静), Hu Bao(鲍虎), Dan-Dan Wu(吴丹丹), Hui Liang(梁慧), Yi-Yan Wang(王义炎), Yan Sun(孙燕), Qiu-Ju Li(李秋菊), and Xue-Feng Sun(孙学峰). Chin. Phys. B, 2021, 30(7): 077501.
[10] Metamagnetic transition and reversible magnetocaloric effect in antiferromagnetic DyNiGa compound
Yan-Hong Ding(丁燕红), Fan-Zhen Meng(孟凡振), Li-Chen Wang(王利晨), Ruo-Shui Liu(刘若水), Jun Shen(沈俊). Chin. Phys. B, 2020, 29(7): 077501.
[11] Effect of Ni substitution on the formability and magnetic properties of Gd50Co50 amorphous alloy
Ben-Zheng Tang(唐本镇), Xiao-Ping Liu(刘晓萍), Dong-Mei Li(李冬梅), Peng Yu(余鹏), Lei Xia(夏雷). Chin. Phys. B, 2020, 29(5): 056401.
[12] Multicaloric and coupled-caloric effects
Jia-Zheng Hao(郝嘉政), Feng-Xia Hu(胡凤霞), Zi-Bing Yu(尉紫冰), Fei-Ran Shen(沈斐然), Hou-Bo Zhou(周厚博), Yi-Hong Gao(高怡红), Kai-Ming Qiao(乔凯明), Jia Li(李佳), Cheng Zhang(张丞), Wen-Hui Liang(梁文会), Jing Wang(王晶), Jun He(何峻), Ji-Rong Sun(孙继荣), Bao-Gen Shen(沈保根). Chin. Phys. B, 2020, 29(4): 047504.
[13] Magnetocaloric effect and critical behavior of the Mn-rich itinerant material Mn3GaC with enhanced ferromagnetic interaction
Pengfei Liu(刘鹏飞), Jie Peng(彭杰), Mianqi Xue(薛面起), Bosen Wang(王铂森). Chin. Phys. B, 2020, 29(4): 047503.
[14] Giant low-field magnetocaloric effect in EuTi1-xNbxO3 (x=0.05, 0.1, 0.15, and 0.2) compounds
Wen-Hao Jiang(姜文昊), Zhao-Jun Mo(莫兆军), Jia-Wei Luo(罗佳薇), Zhe-Xuan Zheng(郑哲轩), Qiu-Jie Lu(卢秋杰), Guo-Dong Liu(刘国栋), Jun Shen(沈俊), Lan Li(李岚). Chin. Phys. B, 2020, 29(3): 037502.
[15] Improvement of the low-field-induced magnetocaloric effect in EuTiO 3 compounds
Shuang Zeng(曾爽), Wen-Hao Jiang(姜文昊), Hui Yang(杨慧), Zhao-Jun Mo(莫兆军) Jun Shen(沈俊), and Lan Li(李岚) . Chin. Phys. B, 2020, 29(12): 127501.
No Suggested Reading articles found!