Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(9): 097202    DOI: 10.1088/1674-1056/20/9/097202
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Transport properties and magnetoresistance in La0.8Te0.2MnO3/ZrO2 composites

Wang Jian-Yuan(王建元), Zhai Wei(翟薇), Jin Ke-Xin(金克新), and Chen Chang-Le(陈长乐)
School of science, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  The transport properties and magnetoresistance of electron-doped manganate / insulator composites (La0.8Te0.2MnO3)1 - x/(ZrO2)x (x=0, 0.3, and 0.5) are investigated. It is found that the metal-insulator transition temperature of this system shifts to a lower value as the ZrO2 content increases. The introduction of ZrO2 enhances both the domain scattering and electron relative scattering in the metal transport region. In the adiabatic small polaron hopping transport region, the thermal activation energy seems invariable regardless of the ZrO2 content. The application of a magnetic field promotes the charge transportation capabilities of the composites, and the magnetoresistance is enhanced with an increase of the ZrO2 content. This could be attributed to the more remarkable modification effect of magnetic field on ordering degree in the composites than in pure La0.8Te0.2MnO3.
Keywords:  manganate      composite      transport property      magnetoresistance  
Received:  29 January 2011      Revised:  11 May 2011      Accepted manuscript online: 
PACS:  72.20.-i (Conductivity phenomena in semiconductors and insulators)  
  72.60.+g (Mixed conductivity and conductivity transitions)  

Cite this article: 

Wang Jian-Yuan(王建元), Zhai Wei(翟薇), Jin Ke-Xin(金克新), and Chen Chang-Le(陈长乐) Transport properties and magnetoresistance in La0.8Te0.2MnO3/ZrO2 composites 2011 Chin. Phys. B 20 097202

[1] Urushibara A, Moritomo Y, Arima T, Asamitsu A, Kido G and Tokura Y 1995 Phys. Rev. B 51 14103
[2] Guo H Z, Chen Z H, Liu L F, Ding S, Zhou Y L, Lu H B, Jin K J and Cheng B L 2004 Appl. Phys. Lett. 85 3172
[3] Schiffer P, Ramirez A P, Bao W and Cheong S W 1995 Phys. Rev. Lett. 75 3336
[4] Tan G T, Zhang X and Chen Z H 2004 J. Appl. Phys. 95 6322
[5] Jin K X, Zhao S G and Chen C L 2009 Acta Phys. Sin. 58 4953 (in Chinese)
[6] Tang J, Chen C L, Jin K X and Zhao S G 2008 Acta Phys. Sin. 57 1166 (in Chinese)
[7] Cao Q Q, Du Y W, Gu B X and Si J W 2005 Chin. Phys. 14 2117
[8] Hueso L E, Rivasa J, Rivadulla F and Lopez-Quintela M A 2001 J. Appl. Phys. 89 1746
[9] Lu W J, Sun Y P, Zhu X B, Song W H and Du J J 2006 Mater. Lett. 60 3207
[10] Jin K X, Zhao S G, Chen C L and Wang J Y 2008 Mater. Lett. 62 1061
[11] Xiao L X, Yuan S L, Wang Y Q and Yin S Y 2007 Rare Metal Materials and Engineering 36 981
[12] Yuan L, Miao J H, Wang Y Q, Liu L and Yuan S L 2007 Journal of Inorganic Materials 22 319
[13] Coey J, Viret M, Ranno L and Ounadjela K 1995 Phys. Rev. Lett. 75 3910
[14] Jaime M, Salamon M B, Pettit K, Rubinstein M, Treece R E, Horwitz J S and Chrisey D B 1996 Appl. Phys. Lett. 68 1576
[15] Jakob G, Westerburg W, Martin F and Adrian H 1998 Phys. Rev. B 58 14966
[16] Saitoh E, Okamoto S, Takahashi K T, Tobe K, Yamamoto K, Kimura T, Ishihara S, Maekawa S and Tokura Y 2001 Nature 410 180
[1] Recent progress on the planar Hall effect in quantum materials
Jingyuan Zhong(钟景元), Jincheng Zhuang(庄金呈), and Yi Du(杜轶). Chin. Phys. B, 2023, 32(4): 047203.
[2] Abnormal magnetoresistance effect in the Nb/Si superconductor-semiconductor heterojunction
Zhi-Wei Hu(胡志伟) and Xiang-Gang Qiu(邱祥冈). Chin. Phys. B, 2023, 32(3): 037401.
[3] Measurement of T wave in magnetocardiography using tunnel magnetoresistance sensor
Zhihong Lu(陆知宏), Shuai Ji(纪帅), and Jianzhong Yang(杨建中). Chin. Phys. B, 2023, 32(2): 020703.
[4] Strain-mediated magnetoelectric control of tunneling magnetoresistance in magnetic tunneling junction/ferroelectric hybrid structures
Wenyu Huang(黄文宇), Cangmin Wang(王藏敏), Yichao Liu(刘艺超), Shaoting Wang(王绍庭), Weifeng Ge(葛威锋), Huaili Qiu(仇怀利), Yuanjun Yang(杨远俊), Ting Zhang(张霆), Hui Zhang(张汇), and Chen Gao(高琛). Chin. Phys. B, 2022, 31(9): 097502.
[5] Gamma induced changes in Makrofol/CdSe nanocomposite films
Ali A. Alhazime, M. ME. Barakat, Radiyah A. Bahareth, E. M. Mahrous,Saad Aldawood, S. Abd El Aal, and S. A. Nouh. Chin. Phys. B, 2022, 31(9): 097802.
[6] Analytical formula describing the non-saturating linear magnetoresistance in inhomogeneous conductors
Shan-Shan Chen(陈珊珊), Yang Yang(杨阳), and Fan Yang(杨帆). Chin. Phys. B, 2022, 31(8): 087303.
[7] Impact of composition ratio on the structure and optical properties of (1-x)MnFe2O4/(x)ZnMn2O4 nanocomposite
Zein K. Heiba, Mohamed Bakr Mohamed, Ali A. Alkathiri, Sameh I. Ahmed, A A Alhazime. Chin. Phys. B, 2022, 31(7): 077102.
[8] Spin transport in epitaxial Fe3O4/GaAs lateral structured devices
Zhaocong Huang(黄兆聪), Wenqing Liu(刘文卿), Jian Liang(梁健), Qingjie Guo(郭庆杰), Ya Zhai(翟亚), and Yongbing Xu(徐永兵). Chin. Phys. B, 2022, 31(6): 068505.
[9] Parity-time symmetric acoustic system constructed by piezoelectric composite plates with active external circuits
Yang Zhou(周扬), Zhang-Zhao Yang(杨彰昭), Yao-Yin Peng(彭尧吟), and Xin-Ye Zou(邹欣晔). Chin. Phys. B, 2022, 31(6): 064304.
[10] Exploration of structural, optical, and photoluminescent properties of (1-x)NiCo2O4/xPbS nanocomposites for optoelectronic applications
Zein K Heiba, Mohamed Bakr Mohamed, Noura M Farag, and Ali Badawi. Chin. Phys. B, 2022, 31(6): 067801.
[11] Maximum entropy mobility spectrum analysis for the type-I Weyl semimetal TaAs
Wen-Chong Li(李文充), Ling-Xiao Zhao(赵凌霄), Hai-Jun Zhao(赵海军),Gen-Fu Chen(陈根富), and Zhi-Xiang Shi(施智祥). Chin. Phys. B, 2022, 31(5): 057103.
[12] Analysis on vibration characteristics of large-size rectangular piezoelectric composite plate based on quasi-periodic phononic crystal structure
Li-Qing Hu(胡理情), Sha Wang(王莎), and Shu-Yu Lin(林书玉). Chin. Phys. B, 2022, 31(5): 054302.
[13] Diffusion of a chemically active colloidal particle in composite channels
Xin Lou(娄辛), Rui Liu(刘锐), Ke Chen(陈科), Xin Zhou(周昕), Rudolf Podgornik, and Mingcheng Yang(杨明成). Chin. Phys. B, 2022, 31(4): 044704.
[14] Magnetoresistance effect in vertical NiFe/graphene/NiFe junctions
Pei-Sen Li(李裴森), Jun-Ping Peng(彭俊平), Yue-Guo Hu(胡悦国), Yan-Rui Guo(郭颜瑞), Wei-Cheng Qiu(邱伟成), Rui-Nan Wu(吴瑞楠), Meng-Chun Pan(潘孟春), Jia-Fei Hu(胡佳飞), Di-Xiang Chen(陈棣湘), and Qi Zhang(张琦). Chin. Phys. B, 2022, 31(3): 038502.
[15] Enhancing the thermoelectric performance through the mutual interaction between conjugated polyelectrolytes and single-walled carbon nanotubes
Shuxun Wan(万树勋), Zhongming Chen(陈忠明), Liping Hao(郝丽苹), Shichao Wang(王世超), Benzhang Li(李本章), Xiao Li(黎潇), Chengjun Pan(潘成军), and Lei Wang(王雷). Chin. Phys. B, 2022, 31(2): 028104.
No Suggested Reading articles found!