Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(9): 097201    DOI: 10.1088/1674-1056/20/9/097201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

An easy and efficient way to treat Green's function for nano-devices with arbitrary shapes and multi-terminal configurations

Yang Mou(杨谋), Ran Xian-Jian(冉先进), Cui Yan(崔岩) and Wang Rui-Qiang(王瑞强)
Laboratory of Quantum Information Technology, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
Abstract  The efficiency of the calculation of Green's function (GF) for nano-devices is very important because the calculation is often needed to be repeated countlessly. We present a set of efficient algorithms for the numerical calculation of GF for devices with arbitrary shapes and multi-terminal configurations. These algorithms can be used to calculate the specified blocks related to the transmission, the diagonals needed by the local density of states calculation, and the full matrix of GF, to meet different calculation levels. In addition, the algorithms for the non-equilibrium occupation and current flow are also given. All these algorithms are described using the basic theory of GF, based on a new partition strategy of the computational area. We apply these algorithms to the tight-binding graphene lattice to manifest their stability and efficiency. We also discuss the physics of the calculation results.
Keywords:  Green's function      tight-binding      numerical calculation  
Received:  03 March 2011      Revised:  24 April 2011      Accepted manuscript online: 
PACS:  72.10.Bg (General formulation of transport theory)  
  73.23.-b (Electronic transport in mesoscopic systems)  
  72.80.Vp (Electronic transport in graphene)  

Cite this article: 

Yang Mou(杨谋), Ran Xian-Jian(冉先进), Cui Yan(崔岩) and Wang Rui-Qiang(王瑞强) An easy and efficient way to treat Green's function for nano-devices with arbitrary shapes and multi-terminal configurations 2011 Chin. Phys. B 20 097201

[1] Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press)
[2] Landauer R 1957 IBM J. Res. Dev. bf1 223
[3] Büttiker M, Imry Y, Landauer R and Pinhas S 1985 Phys. Rev. B bf31 6207
[4] Kassubek F, Stafford C A and Grabert H 1999 Phys. Rev. B bf59 7560
[5] Zhang W, Mingo N and Fisher T S 2007 Phys. Rev. B bf76 195429
[6] Huang Z, Fisher T S and Murthy J Y 2010 J. Appl. Phys. bf108 094319
[7] Lee P A and Fisher D S 1981 Phys. Rev. Lett. bf47 882
[8] Sanvito S, Lambert C J, Jefferson J H and Bratkovsky A M 1999 Phys. Rev. B bf59 11936
[9] Metalidis G and Bruno P 2005 Phys. Rev. B bf72 235304
[10] Cresti A, Farchioni R, Grosso G and Parravicini G P 2003 Phys. Rev. B bf68 075306
[11] Polin'ak P K, Lambert C J, Koltai J and Cserti J 2006 Phys. Rev. B bf74 132508
[12] Lassl A, Schlagheck P and Richter K 2007 Phys. Rev. B bf75 045346
[13] Pecchia A, Penazzi G, Salvucci L and Carlo A D 2008 New J. Phys. bf10 065022
[14] Areshkin D A and Nikoli'c B K 2010 Phys. Rev. B bf81 155450
[15] Petersen D K, Sorensen H H B, Hansen P C, Skelboe S and Stokbro K 2008 J. Comput. Phys. bf227 3174
[16] Wimmer M and Richter K 2009 J. Comput. Phys. bf228 8548
[17] Kazymyrenko K and Waintal X 2008 Phys. Rev. B bf77 115119
[18] Caroli C, Combescot R, Nozieres P and Saint-James D 1971 J. Phys. C bf4 916
[19] Peng J and Li S S 2010 Appl. Phys. Lett. bf97 242105
[20] Chen X W, Song K H, Zhou B H, Wang H Y and Zhou G H 2011 Appl. Phys. Lett. bf98 093111
[21] Hu H, Cai J M, Zhang C D, Gao M, Pan Y, Du S X, Sun Q F, Niu Q, Xie X C and Gao H J 2010 Chin. Phys. B bf19 037202
[22] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[1] Spin—orbit stable dirac nodal line in monolayer B6O
Wen-Rong Liu(刘文荣), Liang Zhang(张亮), Xiao-Jing Dong(董晓晶), Wei-Xiao Ji(纪维霄), Pei-Ji Wang(王培吉), and Chang-Wen Zhang(张昌文). Chin. Phys. B, 2022, 31(3): 037305.
[2] Projective representation of D6 group in twisted bilayer graphene
Noah F. Q. Yuan. Chin. Phys. B, 2021, 30(7): 070311.
[3] Dirac states from px,y orbitals in the buckled honeycomb structures: A tight-binding model and first-principles combined study
Shi-Ru Song(宋士儒), Ji-Hui Yang(杨吉辉), Shi-Xuan Du(杜世萱), Hong-Jun Gao(高鸿钧), Boris I Yakobson. Chin. Phys. B, 2018, 27(8): 087101.
[4] One-dimensional method of investigating the localized states in armchair graphene-like nanoribbons with defects
Yang Xie(谢阳), Zhi-Jian Hu(胡智健), Wen-Hao Ding(丁文浩), Xiao-Long Lü(吕小龙), Hang Xie(谢航). Chin. Phys. B, 2017, 26(12): 127310.
[5] Electronic and magnetic properties at rough alloyed interfaces of Fe/Co on Au substrates: An augmented space study
Priyadarshini Parida, Biplab Ganguli. Chin. Phys. B, 2016, 25(5): 057302.
[6] Quantum dynamics of charge transfer on the one-dimensional lattice: Wave packet spreading and recurrence
V N Likhachev, O I Shevaleevskii, G A Vinogradov. Chin. Phys. B, 2016, 25(1): 018708.
[7] Resonant tunneling through double-barrier structures on graphene
Deng Wei-Yin (邓伟胤), Zhu Rui (朱瑞), Xiao Yun-Chang (肖运昌), Deng Wen-Ji (邓文基). Chin. Phys. B, 2014, 23(1): 017202.
[8] Spin gapless armchair graphene nanoribbons under magnetic field and uniaxial strain
Hou Hai-Ping (侯海平), Xie Yue-E (谢月娥), Chen Yuan-Ping (陈元平), Ouyang Tao (欧阳滔), Ge Qing-Xia (葛青霞), Zhong Jian-Xin (钟建新). Chin. Phys. B, 2013, 22(8): 087303.
[9] Electronic band transformation from indirect gap to direct gap in Si—H compound
Ding Jian-Ning(丁建宁), Wang Jun-Xiong(王君雄), Yuan Ning-Yi(袁宁一), Kan Biao(坎标), and Chen Xiao-Shuang(陈效双). Chin. Phys. B, 2010, 19(7): 077103.
[10] Curvature and Zeeman effects on persistent currents in a multi-walled carbon nanotorus
Xu Ning(徐宁), Ding Jian-Wen(丁建文), Ma Ming-Ming(马明明), and Tang Xian(汤贤). Chin. Phys. B, 2010, 19(1): 016101.
[11] Mode field diameter and nonlinear properties of air-core nanowires
Hu Xiao-Hong(胡晓鸿), Zhao Wei(赵卫), Gong Yong-Kang(宫永康), Wang Lei-Ran(王擂然), Lu Ke-Qing(卢克清), and Liu Xue-Ming(刘雪明). Chin. Phys. B, 2009, 18(8): 3183-3188.
[12] Persistent currents in three-dimensional shell-doped nanorings
Xu Ning(徐宁), Ding Jian-Wen(丁建文), Chen Hong-Bo(陈宏波), and Ma Ming-Ming(马明明). Chin. Phys. B, 2009, 18(5): 2030-2034.
[13] Evolution of soliton-like train in Klein--Gordon lattice system
Xia Qing-Lin(夏庆林), Yi Jian-Hong(易健宏), Peng Yuan-Dong(彭元东), Ye Tu-Ming(叶途明), Li Li-Ya(李丽娅), and Wang Hong-Zhong(王红忠). Chin. Phys. B, 2007, 16(1): 223-227.
[14] Adsorption and diffusion of Si adatom near single-layer steps on Si surface
Zhu Xiao-Yan (朱晓焱), Huang Yan (黄燕). Chin. Phys. B, 2005, 14(10): 2083-2089.
[15] Deposition behaviour of single Si adatom on p(2×2) Si(100) surface
Huang Yan (黄燕), Zhu Xiao-Yan (朱晓焱). Chin. Phys. B, 2004, 13(5): 725-730.
No Suggested Reading articles found!