CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
The effect of a HfO2 insulator on the improvement of breakdown voltage in field-plated GaN-based HEMT |
Mao Wei(毛维)a)† ,Yang Cui(杨翠)b),Hao Yao(郝跃)a), Ma Xiao-Hua(马晓华)a), Wang Chong(王冲)a),Zhang Jin-Cheng(张进成)a), Liu Hong-Xia(刘红侠)a), Bi Zhi-Wei(毕志伟)a), Xu Sheng-Rui(许晟瑞)a), Yang Lin-An(杨林安)a), Yang Ling(杨凌)a), Zhang Kai(张凯)a), Zhang Nai-Qian(张乃千)a),and Pei Yei(裴轶)a) |
a Key Laboratory of Ministry of Education for Wide Band-Gap Semiconductor Materials and Devices, School of Microelectronics, Xidian University, Xi'an 710071, China; b School of Technical Physics, Xidian University, Xi'an 710071, China |
|
|
Abstract A GaN/Al0.3Ga0.7N/AlN/GaN high-electron mobility transistor utilizing a field plate (with a 0.3 μm overhang towards the drain and a 0.2 μm overhang towards the source) over a 165-nm sputtered HfO2 insulator (HfO2-FP-HEMT) is fabricated on a sapphire substrate. Compared with the conventional field-plated HEMT, which has the same geometric structure but uses a 60-nm SiN insulator beneath the field plate (SiN-FP-HEMT), the HfO2-FP-HEMT exhibits a significant improvement of the breakdown voltage (up to 181 V) as well as a record field-plate efficiency (up to 276 V/μm). This is because the HfO2 insulator can further improve the modulation of the field plate on the electric field distribution in the device channel, which is proved by the numerical simulation results. Based on the simulation results, a novel approach named the proportional design is proposed to predict the optimal dielectric thickness beneath the field plate. It can simplify the field-plated HEMT design significantly.
|
Received: 12 March 2011
Revised: 24 May 2011
Accepted manuscript online:
|
PACS:
|
72.80.Ey
|
(III-V and II-VI semiconductors)
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
Cite this article:
Mao Wei(毛维),Yang Cui(杨翠),Hao Yao(郝跃), Ma Xiao-Hua(马晓华), Wang Chong(王冲),Zhang Jin-Cheng(张进成), Liu Hong-Xia(刘红侠), Bi Zhi-Wei(毕志伟), Xu Sheng-Rui(许晟瑞), Yang Lin-An(杨林安), Yang Ling(杨凌), Zhang Kai(张凯), Zhang Nai-Qian(张乃千),and Pei Yei(裴轶) The effect of a HfO2 insulator on the improvement of breakdown voltage in field-plated GaN-based HEMT 2011 Chin. Phys. B 20 097203
|
[1] |
Pearton S J, Zolper J C, Shul R J and Ren F 1999 J. Appl. Phys. 86 1
|
[2] |
Mishra U K, Parikh P and Wu Y F 2002 Proc. IEEE 90 1022
|
[3] |
Khan M A, Bhattarai A, Kuznia J N and Olson D T 1993 Appl. Phys. Lett. 63 1214
|
[4] |
Frensley W R 1981 IEEE Trans. Electron Devices 28 962
|
[5] |
Conti F and Conti M 1972 Solid State Electron. 15 93
|
[6] |
Zhang N Q, Keller S, Parish G, Heikman S, DenBaars S P and Mishra U K 2000 IEEE Electron Device Lett. 21 421
|
[7] |
Guo L L, Feng Q, Hao Y and Yang Y 2007 Acta Phys. Sin. 56 2895 (in Chinese)
|
[8] |
Karmalkar S, Deng J, Shur M S and Gaska R 2001 IEEE Electron Device Lett. 22 373
|
[9] |
Saito W, Takada Y, Kuraguchi M, Tsuda K, Omura I, Ogura T and Ohashi H 2003 IEEE Trans. Electron Devices 50 2528
|
[10] |
Xing H, Dora Y, Chini A, Heikman S, Keller S and Mishra U K 2004 IEEE Electron Device Lett. 25 161
|
[11] |
Saito W, Kuraguchi M, Takada Y, Tsuda K, Omura I and Ogura T 2005 IEEE Trans. Electron Device 52 106
|
[12] |
Ando Y, Wakejima A, Okamoto Y, Nakayama T, Ota K, Yamanoguchi K, Murase Y, Kasahara K, Matsunaga K, Inoue T and Miyamoto H 2005 IEDM Tech. Dig. 576
|
[13] |
Mao W, Yang C, Hao Y, Zhang J C, Liu H X, Ma X H, Wang C, Zhang J F, Yang L A, Xu S R, Bi Z W, Zhou Z, Yang L and Wang H 2011 Acta Phys. Sin. 60 017205 (in Chinese)
|
[14] |
Dora Y, Chakraborty A, McCarthy L, Keller S, DenBaars S P and Mishra U K 2006 IEEE Electron Dev. Lett. 27 713
|
[15] |
Pei Y, Chen Z, Brown D, Keller S, Denbaars S P and Mishra U K 2009 IEEE Electron Dev. Lett. 30 328
|
[16] |
Liu C, Chor E F and Tan L S 2006 Appl. Phys. Lett. 88 173504
|
[17] |
Yue Y Z, Hao Y, Zhang J C, Ni J Y, Mao W, Feng Q and Liu L J 2008 IEEE Electron Dev. Lett. 29 838
|
[18] |
Liu C, Chor E F and Tan L S 2007 Semicond. Sci. Technol. 22 522
|
[19] |
Mao W, Yang C, Hao Y, Zhang J C, Liu H X, Bi Z W, Xu S R, Xue J S, Ma X H, Wang C, Yang L A, Zhang J F and Kuang X W 2011 Chin. Phys. B 20 017203
|
[20] |
Kunihiro K, Kasahara K, Takahashi Y and Ohno Y 1999 IEEE Electron Device Lett. 20 608
|
[21] |
Karmalkar S and Mishra U K 2001 IEEE Trans. Electron Devices 48 1515
|
[22] |
Remashan K, Huang W P and Chyi J I 2007 Microelectron. Eng. 84 2907
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|