CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Impact of composition ratio on the structure and optical properties of (1-x)MnFe2O4/(x)ZnMn2O4 nanocomposite |
Zein K. Heiba1, Mohamed Bakr Mohamed1,2,†, Ali A. Alkathiri3, Sameh I. Ahmed3, A A Alhazime2 |
1 Department of Physics, Faculty of Science, Ain shams University, Cairo 11566, Egypt; 2 Physics Department, Faculty of Science, Taibah University, Al-Madina al Munawarah, Saudi Arabia; 3 Depatment of Physics, College of Science, Taif University, P. O. Box 11099, Taif 21944, Saudi Arabia |
|
|
Abstract ($1-x$)MnFe$_{2}$O$_{4}$ (MFO)/$x$ZnMn$_{2}$O$_{4}$ (ZMO) ($x=0$, 0.2, 0.5, 0.8, and 1.0) nanocomposite samples were prepared using co-precipitation procedure. The phase percentage, cell parameters, and crystallite size of MFO and ZMO phases in each nanocomposite sample were calculated using Rietveld refinement procedure. The x-ray diffraction (XRD) analysis and Fourier-transform infrared spectroscopy techniques established the variation in the lattice parameters of each phase are due to permutation of all cations among the octahedral and tetrahedral sites of MFO and ZMO. The different oxidation states of different ions in all samples were determined using x-ray photoelectron spectroscopy (XPS) technique. The variation in absorbance of the nanocomposite samples with composition parameter ($x$) is dependent on the wavelength region. The optical bandgap of the nanocomposite samples is decreased as the content of ZMO phase increased. The effect of alloying on the refractive index, extinction coefficient, dielectric constant, optical conductivity, and the nonlinear optical behaviors of all samples were studied in detail. The nanocomposite sample $x=0.5$ disclosed upgraded optical parameters with the highest refractive index, optical conductivity, and PL intensity, which nominate it to be functional in various application fields.
|
Received: 12 December 2021
Revised: 13 March 2022
Accepted manuscript online: 23 March 2022
|
PACS:
|
71.20.Nr
|
(Semiconductor compounds)
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
81.07.Bc
|
(Nanocrystalline materials)
|
|
Fund: The authors acknowledge Taif University Research Supporting Project number (TURSP-2020/66), Taif University, Taif, Saudi Arabia. |
Corresponding Authors:
Mohamed Bakr Mohamed
E-mail: mbm1977@yahoo.com
|
Cite this article:
Zein K. Heiba, Mohamed Bakr Mohamed, Ali A. Alkathiri, Sameh I. Ahmed, A A Alhazime Impact of composition ratio on the structure and optical properties of (1-x)MnFe2O4/(x)ZnMn2O4 nanocomposite 2022 Chin. Phys. B 31 077102
|
[1] Heiba Z K, Mohamed M B, El-naggar A M and Altowairqi Y 2021 Appl. Phys. A 127 1 [2] Heiba Z K, Deyab M A, El-naggar A M and Mohamed M B 2021 Ceram. Int. 47 7475 [3] Farag N M, Deyab M A, El-naggar A M, Aldhafiri A M, Mohamed M B and Heiba Z K 2021 J. Mater. Res. Technol. 10 1415 [4] Meena S, Anantharaju K S, Vidya Y S, Renuka L, Uma B, Sharma S C, Prasad B D and More S S 2021 Ceram. Int. 47 14760 [5] Li X, Hou Y, Zhao Q and Wang L 2011 J. Colloid Interface Sci. 358 102 [6] Heiba Z K, Ghannam M M, Sanad M M S, Albassam A A and Mohamed M B 2020 J. Mater. Sci.:Mater. Electron. 31 8946 [7] Ghannam M M, Heiba Z K, Sanad M M S and Mohamed M B 2020 Appl. Phys. A 126 1 [8] Heiba Z K, Albassam A A and Mohamed M B 2020 Appl. Phys. A 126 1) [9] Heiba Z K and Mohamed M B 2020 J. Inorg. Organomet. Polym. Mater. 30 879 [10] Zhao W, Wei Z, Zhang X, Ding M, Huang S and Yang S 2020 Appl. Catal. A:Gen. 593 117443 [11] Patade S R, Andhare D D, Kharat P B, Humbe A V and Jadhav K M 2020 Chem. Phys. Lett. 745 137240 [12] Pang Y, Kong L, Chen D and Yuvaraja G 2019 Appl. Surf. Sci. 471 408 [13] Cam N T D, Pham H D, Pham T D, et al. 2021 Ceram. Int. 47 1686 [14] Vignesh K, Suganthi A, Min B K and Kang M 2014 J. Mol. Catal. Chem. 395 373 [15] Mondal D K, Borgohain C, Paul N and Borah J P 2019 Physica B:Condens. Matter 567 122 [16] Chinnathambi A, Nasif O, Alharbi S A and Khan S S 2021 Mater. Sci. Semicond. Process. 134 105992 [17] Abdel-Wahed M S, El-Kalliny A S, Badawy M I, Attia M S and Gad-Allah T A 2020 Chem. Eng. Sci. 382 122936 [18] Heiba Z K, Mohamed M B, Ghannam M M, El-naggar A M and Altowairqi Y 2021 J. Mater. Sci.:Mater. Electron. 32 19529 [19] Heiba Z K, Mohamed M B, Ghannam M M and Ahmed S I 2021 Appl. Phys. A 127 1 [20] Tauc J, Grigorovici R and Vancu A 1966 Phys. Status Solidi 15 627 [21] Heiba Z K, Mohamed M B, Badawi A and Alhazime A A 2021 Chem. Phys. Lett. 770 138460 [22] Rodríguez-Carvajal J 1993 Physics B (Amsterdam, Neth.) 192 55 [23] Lutterotti L 2010 Phys. Res. B 268 334 [24] El-naggar A M, Mohamed M B, Aldhafiri A M and Heiba Z K 2020 J. Mater. Res. Technol. 9 16435 [25] Heiba Z K and Mohamed M B 2018 Appl. Phys. A 124 1 [26] Gherbi R, Bessekhouad Y and Trar M 2016 J. Alloys Compd. 655 188 [27] Heiba Z K, Shaltout A A, Ahmed S I, Alzahrani E, Wahba H H, Deyab M A and Mohamed M B 2021 Appl. Phys. A 127 1 [28] Fan B B, Hu A P, Chen X H, Zhang S Y, et al. 2016 Electrochim. Acta 213 37 [29] Yin L, Adler I, Tsang T, Matienzo L and Grim S 1974 Chem. Phys. Lett. 24 81 [30] Hong D, Yamada Y, Nagatomi T, Takai Y and Fukuzumi S 2012 J. Am. Chem. Soc. 134 19572 [31] Xue P, Jiang S, Li W, Shi K, Ma L and Li P 2021 Bioprocess. Biosyst. Eng. 44 1119 [32] Zhang C, Xie A, Zhang W, Chang J, Liu C, Gu L, Duo X, Pan F and Luo S 2021 J. Energy Storage 34 102181 [33] Wang D W, Wang Q H and Wang T M 2011 Inorg. Chem. 50 6482 [34] Koninck M D, Poirier S C and Marsan B 2006 J. Electrochem. Soc. 153 2103 [35] Tao X, Shi W, Zeng B, Zhao Y, Ta N, Wang S, Adenle A A, Li R and Li C 2020 ACS Catal. 10 5941 [36] Baig M M, Zulfiqar S, Yousuf M A, Touqeer M, Ullah S, Agboola P O, Warsi M F and Shakir I 2020 Ceram. Int. 46 23208 [37] Gherbi R, Bessekhouad Y and Trari M 2016 J. Phys. Chem. Solids 89 69 [38] Heiba Z K, Mohamed M B, Ahmed S I, El-naggar A M and Albassam A A 2020 J. Mater. Sci.:Mater. Electron. 31 14746 [39] Mondal D K, Borgohain C, Paul N and Borah J P 2019 Physica B:Condens. Matter 567 122 [40] Singha D K and Mahataa P 2017 Dalton Trans. 46 11344 [41] Heiba Z K, Mohamed M B and Imam N G 2017 J. Supercond. Nov. Magn. 30 3123 [42] Manikandan A, Vijaya J J, Kennedy L J and Bououdina M 2013 J. Mol. Struct. 332 1035 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|