Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(2): 028104    DOI: 10.1088/1674-1056/ac48f9
Special Issue: SPECIAL TOPIC — Organic and hybrid thermoelectrics
SPECIAL TOPIC—Organic and hybrid thermoelectrics Prev   Next  

Enhancing the thermoelectric performance through the mutual interaction between conjugated polyelectrolytes and single-walled carbon nanotubes

Shuxun Wan(万树勋)1, Zhongming Chen(陈忠明)2, Liping Hao(郝丽苹)1, Shichao Wang(王世超)1, Benzhang Li(李本章)1, Xiao Li(黎潇)1, Chengjun Pan(潘成军)1,‡, and Lei Wang(王雷)1,†
1 Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China;
2 School of Environment and Civil Engineering, Dongguan Cleaner Production Technology Centre, Dongguan University of Technology, Dongguan 523808, China
Abstract  We present a method of constructing composites composed of conjugated polyelectrolytes (CPEs) and single-walled carbon nanotubes (SWCNTs) to obtain a high-performing flexible thermoelectric generator. In this approach, three kinds of polymers, namely, poly[(1,4-(2,5-didodecyloxybenzene)-alt-2,5-thiophene] (P1), poly[(1,4-(2,5-bis-sodium butoxysulfonate-phenylene)-alt-2,5-thiophene] (P2), and poly[(1,4-(2,5-bis-acid butoxysulfonic-phenylene)-alt-2,5-thiophene] (P3) are designed, synthesized and complexed with SWCNTs as thermoelectric composites. The electrical conductivities of the CPEs/SWCNTs (P2/SWCNTs, and P3/SWCNTs) nanocomposites are much higher than those of non-CPEs/SWCNTs (P1/SWCNTs) nanocomposites. Among them, the electrical conductivity of P2/SWCNTs with a ratio of 1:4 reaches 3686 S·cm-1, which is 12.4 times that of P1/SWCNTs at the same SWCNT mass ratio. Moreover, CPEs/SWCNTs composites (P2/SWCNTs) display remarkably improved thermoelectric properties with the highest power factor (PF) of 163 μW·m-1·K-2. In addition, a thermoelectric generator is fabricated with P2/SWCNTs composite films, and the output power and power density of this generator reach 1.37 μW and 1.4 W·m-2 (cross-section) at ΔT=70 K. This result is over three times that of the thermoelectric generator composed of non-CPEs/SWCNTs composite films (P1/SWCNTs, 0.37 μW). The remarkably improved electrical conductivities and thermoelectric properties of the CPEs/SWCNTs composites (P2/SWCNTs) are attributed to the enhanced interaction. This method for constructing CPEs/SWCNTs composites can be applied to produce thermoelectric materials and devices.
Keywords:  composites      thermoelectric      SWCNTs      conjugated polyelectrolytes  
Received:  31 July 2021      Revised:  02 January 2022      Accepted manuscript online:  07 January 2022
PACS:  81.05.Qk (Reinforced polymers and polymer-based composites)  
  72.15.Jf (Thermoelectric and thermomagnetic effects)  
  81.05.U- (Carbon/carbon-based materials)  
  81.05.Lg (Polymers and plastics; rubber; synthetic and natural fibers; organometallic and organic materials)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. 51803126 and 21704065) and the Natural Science Foundation of Guangdong Province, China (Grant No. 2018A0303130157). We thank the Instrumental Analysis Centre of Shenzhen University for analytical support.
Corresponding Authors:  Chengjun Pan, Lei Wang     E-mail:  wl@szu.edu.cn;pancj@szu.edu.cn

Cite this article: 

Shuxun Wan(万树勋), Zhongming Chen(陈忠明), Liping Hao(郝丽苹), Shichao Wang(王世超), Benzhang Li(李本章), Xiao Li(黎潇), Chengjun Pan(潘成军), and Lei Wang(王雷) Enhancing the thermoelectric performance through the mutual interaction between conjugated polyelectrolytes and single-walled carbon nanotubes 2022 Chin. Phys. B 31 028104

[1] Fan F R, Tang W and Wang Z L 2016 Adv. Mater. 28 4283
[2] Wang Z L and Wu W 2012 Angew. Chem. Int. Ed. 51 11700
[3] Bubnova O, Khan Z U, Malti A, Braun S, Fahlman M, Berggren M and Crispin X 2011 Nat. Mater. 10 429
[4] Chen Y, Zhao Y and Liang Z 2015 Energy Environ. Sci. 8 401
[5] Yu C, Choi K, Yin L and Grunlan J C 2011 Acs Nano 5 7885
[6] Li C, Jiang F, Liu C, Wang W, Li X, Wang T and Xu J 2017 Chem. Eng. J. 320 201
[7] Niemela J P, Karttunen A J and Karppinen M 2015 J. Mater. Chem. C 3 10349
[8] Fan W, Zhang Y, Guo C Y and Chen G 2019 Compos. Sci. Technol. 183 107794
[9] Lan X, Wang T, Liu C, Liu P, Xu J, Liu X, Du Y and Jiang F 2019 Compos. Sci. Technol. 182 107767
[10] Zhou Y, Yin X, Liu Y, Zhou X, Wan T, Wang S, Gao C and Wang L 2019 ACS Sustain. Chem. Eng. 7 11832
[11] Hao L, Kang J, Shi J, Xu J, Cao J, Wang L, Liu Y and Pan C 2020 Compos. Sci. Technol. 199 108359
[12] Niu R, Pan C, Chen Z, Wang L and Wang L 2020 Chem. Eng. J. 381 122650
[13] Cui Q and Bazar G C 2018 Acc. Chem. Res. 51 202
[14] Mai C K, Schlitz R A, Su G M, Spitzer D, Wang X, Fronk S L, Cahill D G, Chabinyc M L and Bazan G C 2014 J. Am. Chem. Soc. 136 13478
[15] Mai C K, Arai T, Liu X, Fronk S L, Su G M, Segalman R A, Chabinyc M L and Bazan G C 2015 Chem. Commun. 51 17607
[16] Mai C K, Russ B, Fronk S L, Hu N, Chan-Park M B, Urban J J, Segalman R A, Chabinyc M L and Bazan G C 2015 Energy Environ. Sci. 8 2341
[17] Li Y, Mai C K, Hung P, Liu X, Thuc-Quyen N, Bazan G C and ChanPark M B 2014 Adv. Mater. 26 4697
[18] Wang L, Pan C, Liang A, Zhou X, Zhou W, Wan T and Wang L 2017 Polym. Chem. 8 4644
[19] Zhou X, Pan C, Liang A, Wang L and Wong W Y 2017 Compos. Sci. Technol. 145 40
[20] Liu T, Shinohara A, Tan G, Pan C and Wang L 2019 Macromol. Mater. Eng. 304 1800730
[21] Ritter U, Scharff P, Siegmund C, Dmytrenko O P, Kulish N P, Prylutskyy Y I, Belyi N M, Gubanov V A, Komarova L I, Lizunova S V, Poroshin V G, Shlapatskaya V V and Bernas H 2006 Carbon 44 2694
[22] Wang Y Y, Cai K F, Shen S and Yao X 2015 Synth. Met. 209 480
[23] Wang H, Hsu J H, Yi S I, Kim S L, Choi K, Yang G and Yu C 2015 Adv. Mater. 27 6855
[24] An C J, Kang Y H, Song H, Jeong Y and Cho S Y 2017 J. Mater. Chem. A 5 15631
[25] Zhou H, Li X, Gao C, Yang F, Ye X, Liu Y and Wang L 2021 Compos. Sci. Technol. 201 108518
[26] Cho S, Seo J H, Park S H, Beaupre S, Leclerc M and Heeger A J 2010 Adv. Mater. 22 1253
[27] Zhou H, Gao C, Liu T, Pan C and Wang L 2020 J. Mater. Chem. C 8 7096
[28] Karlsson R H, Herland A, Hamedi M, Wigenius J A, Aslund A, Liu X, Fahlman M, Inganas O and Konradsson P 2009 Chem. Mater. 21 1815
[29] Tan J, Huang H, Wang D, Qin S, Xiao X, Chen Z, Liu D and Wang L 2020 J. Mater. Chem. C 8 4827
[30] Tan J, Chen Z, Wang D, Qin S, Xiao X, Xie D, Liu D and Wang L 2019 J. Mater. Chem. A 7 24982
[31] Kim S L, Choi K, Tazebay A and Yu C 2014 Acs Nano 8 2377
[32] Li B, Mao Y, Mao X, Liu Y, Li X, Zhou Y, Wang S, Yang F, Gao C and Wang L 2020 ACS Appl. Energy Mater. 3 11947
[33] Zhao W, Fan S, Xiao N, Liu D, Tay Y Y, Yu C, Sim D, Hng H H, Zhang Q, Boey F, Ma J, Zhao X, Zhang H and Yan Q 2012 Energy Environ. Sci. 5 5364
[34] Wan T, Yin X, Pan C, Liu D, Zhou X, Gao C, Wong W Y and Wang L 2019 Polymers 11 593
[35] Zhang Q, Sun Y, Xu W and Zhu D 2012 Energy Environ. Sci. 5 9639
[1] Prediction of lattice thermal conductivity with two-stage interpretable machine learning
Jinlong Hu(胡锦龙), Yuting Zuo(左钰婷), Yuzhou Hao(郝昱州), Guoyu Shu(舒国钰), Yang Wang(王洋), Minxuan Feng(冯敏轩), Xuejie Li(李雪洁), Xiaoying Wang(王晓莹), Jun Sun(孙军), Xiangdong Ding(丁向东), Zhibin Gao(高志斌), Guimei Zhu(朱桂妹), Baowen Li(李保文). Chin. Phys. B, 2023, 32(4): 046301.
[2] Advancing thermoelectrics by suppressing deep-level defects in Pb-doped AgCrSe2 alloys
Yadong Wang(王亚东), Fujie Zhang(张富界), Xuri Rao(饶旭日), Haoran Feng(冯皓然),Liwei Lin(林黎蔚), Ding Ren(任丁), Bo Liu(刘波), and Ran Ang(昂然). Chin. Phys. B, 2023, 32(4): 047202.
[3] Adaptive genetic algorithm-based design of gamma-graphyne nanoribbon incorporating diamond-shaped segment with high thermoelectric conversion efficiency
Jingyuan Lu(陆静远), Chunfeng Cui(崔春凤), Tao Ouyang(欧阳滔), Jin Li(李金), Chaoyu He(何朝宇), Chao Tang(唐超), and Jianxin Zhong(钟建新). Chin. Phys. B, 2023, 32(4): 048401.
[4] Thermoelectric signature of Majorana zero modes in a T-typed double-quantum-dot structure
Cong Wang(王聪) and Xiao-Qi Wang(王晓琦). Chin. Phys. B, 2023, 32(3): 037304.
[5] Pressure-induced stable structures and physical properties of Sr-Ge system
Shuai Han(韩帅), Shuai Duan(段帅), Yun-Xian Liu(刘云仙), Chao Wang(王超), Xin Chen(陈欣), Hai-Rui Sun(孙海瑞), and Xiao-Bing Liu(刘晓兵). Chin. Phys. B, 2023, 32(1): 016101.
[6] Large Seebeck coefficient resulting from chiral interactions in triangular triple quantum dots
Yi-Ming Liu(刘一铭) and Jian-Hua Wei(魏建华). Chin. Phys. B, 2022, 31(9): 097201.
[7] Tunable anharmonicity versus high-performance thermoelectrics and permeation in multilayer (GaN)1-x(ZnO)x
Hanpu Liang(梁汉普) and Yifeng Duan(段益峰). Chin. Phys. B, 2022, 31(7): 076301.
[8] Reaction mechanism of metal and pyrite under high-pressure and high-temperature conditions and improvement of the properties
Yao Wang(王遥), Dan Xu(徐丹), Shan Gao(高姗), Qi Chen(陈启), Dayi Zhou(周大义), Xin Fan(范鑫), Xin-Jian Li(李欣健), Lijie Chang(常立杰),Yuewen Zhang(张跃文), Hongan Ma(马红安), and Xiao-Peng Jia(贾晓鹏). Chin. Phys. B, 2022, 31(6): 066206.
[9] A self-powered and sensitive terahertz photodetection based on PdSe2
Jie Zhou(周洁), Xueyan Wang(王雪妍), Zhiqingzi Chen(陈支庆子), Libo Zhang(张力波), Chenyu Yao(姚晨禹), Weijie Du(杜伟杰), Jiazhen Zhang(张家振), Huaizhong Xing(邢怀中), Nanxin Fu(付南新), Gang Chen(陈刚), and Lin Wang(王林). Chin. Phys. B, 2022, 31(5): 050701.
[10] Research status and performance optimization of medium-temperature thermoelectric material SnTe
Pan-Pan Peng(彭盼盼), Chao Wang(王超), Lan-Wei Li(李岚伟), Shu-Yao Li(李淑瑶), and Yan-Qun Chen(陈艳群). Chin. Phys. B, 2022, 31(4): 047307.
[11] Advances in thermoelectric (GeTe)x(AgSbTe2)100-x
Hongxia Liu(刘虹霞), Xinyue Zhang(张馨月), Wen Li(李文), and Yanzhong Pei(裴艳中). Chin. Phys. B, 2022, 31(4): 047401.
[12] Module-level design and characterization of thermoelectric power generator
Kang Zhu(朱康), Shengqiang Bai(柏胜强), Hee Seok Kim, and Weishu Liu(刘玮书). Chin. Phys. B, 2022, 31(4): 048502.
[13] Effect of carbon nanotubes addition on thermoelectric properties of Ca3Co4O9 ceramics
Ya-Nan Li(李亚男), Ping Wu(吴平), Shi-Ping Zhang(张师平), Yi-Li Pei(裴艺丽), Jin-Guang Yang(杨金光), Sen Chen(陈森), and Li Wang(王立). Chin. Phys. B, 2022, 31(4): 047203.
[14] Thermoelectric performance of XI2 (X = Ge, Sn, Pb) bilayers
Nan Lu(陆楠) and Jie Guan(管杰). Chin. Phys. B, 2022, 31(4): 047201.
[15] Micro thermoelectric devices: From principles to innovative applications
Qiulin Liu(刘求林), Guodong Li(李国栋), Hangtian Zhu(朱航天), and Huaizhou Zhao(赵怀周). Chin. Phys. B, 2022, 31(4): 047204.
No Suggested Reading articles found!