Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(5): 054302    DOI: 10.1088/1674-1056/ac3649
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Analysis on vibration characteristics of large-size rectangular piezoelectric composite plate based on quasi-periodic phononic crystal structure

Li-Qing Hu(胡理情), Sha Wang(王莎), and Shu-Yu Lin(林书玉)
Shaanxi Key Laboratory of Ultrasonics, Institute of Applied Acoustics, Shaanxi Normal University, Xi'an 710119, China
Abstract  Based on the theory of composite materials and phononic crystals (PCs), a large-size rectangular piezoelectric composite plate with the quasi-periodic PC structure composed of PZT-4 and epoxy is proposed in this paper. This PC structure can suppress the transverse vibration of the piezoelectric composite plate so that the thickness mode is purer and the thickness vibration amplitude is more uniform. Firstly, the vibration of the model is analyzed theoretically, the electromechanical equivalent circuit diagram of three-dimensional coupled vibration is established, and the resonance frequency equation is derived. The effects of the length, width, and thickness of the piezoelectric composite plate at the resonant frequency are obtained by the analytical method and the finite element method, the effective electromechanical coupling coefficient is also analyzed. The results show that the resonant frequency can be changed regularly and the electromechanical conversion can be improved by adjusting the size of the rectangular piezoelectric plate. The effect of the volume fraction of the scatterer on the resonant frequency in the thickness direction is studied by the finite element method. The band gap in X and Y directions of large-size rectangular piezoelectric plate with quasi-periodic PC structures are calculated. The results show that the theoretical results are in good agreement with the simulation results. When the resonance frequency is in the band gap, the decoupling phenomenon occurs, and then the vibration mode in the thickness direction is purer.
Keywords:  composite materials      rectangular piezoelectric plate      coupled vibration      band gap  
Received:  09 September 2021      Revised:  12 October 2021      Accepted manuscript online: 
PACS:  43.40.+s (Structural acoustics and vibration)  
  43.35.+d (Ultrasonics, quantum acoustics, and physical effects of sound)  
  63.20.D- (Phonon states and bands, normal modes, and phonon dispersion)  
  63.20.-e (Phonons in crystal lattices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.11674206,11874253,and 12174240) and the Fundamental Research Funds for the Central Universities,China (Grant No.020CBLY003).
Corresponding Authors:  Shu-Yu Lin,E-mail:sylin@snnu.edu.cn     E-mail:  sylin@snnu.edu.cn
About author:  2021-11-4

Cite this article: 

Li-Qing Hu(胡理情), Sha Wang(王莎), and Shu-Yu Lin(林书玉) Analysis on vibration characteristics of large-size rectangular piezoelectric composite plate based on quasi-periodic phononic crystal structure 2022 Chin. Phys. B 31 054302

[1] Lee H J and Zhang S 2012 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 59 1969
[2] Gururaja T R, Schulze W A, Cross L E and Newnham R E 1985 IEEE Trans. Sonics Ultrason. 32 481
[3] Chan H L W and Unsworth J 1989 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 36 434
[4] Chen C and Lin S Y 2021 Acta Phys. Sin. 70 017701 (in Chinese)
[5] Zhou D, Cheung K F, Chen Y, Lau S T, Zhou Q F, Shung K K, Luo H S, Dai J Y and Chan H L W 2011 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 58 477
[6] Hou S, Yang X, Fei C, Sun X H, Chen Q, Lin P F, Li D, Yang Y T and Zhou Q F 2018 J. Elec. Mater. 47 6842
[7] Jian X H, Han Z L, Liu P B, Xu J, Li Z J, Li P Y, Shao W W, Cui Y Y and Zhou Y J 2017 Biomed Res. Int. 2017 9327270
[8] Liu D, Yue Q, Deng J, Lin D, Li X B, Di W N, Wang X A, Zhao X Y and Luo H S 2015 Sensors 15 6807
[9] Kim K B, Hsu D K, Ahn B, Kim Y G and Barnard B J 2010 Ultrasonics 50 790
[10] Jadidian B, Hagh N M, Winder A A and Safari A 2009 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 56 368
[11] Wang S and Lin S Y 2019 Acta Phys. Sin. 68 024303 (in Chinese)
[12] Lin J Y and Lin S Y 2020 Acta Phys. Sin. 69 184302 (in Chinese)
[13] Biçer A 2021 Ultrasonics 117 106551
[14] Silvia R and Francisco M E 2018 Adv. Appl. Ceram. 117 117
[15] Kong X Y, Yue L L, Chen Y and Liu Y K 2012 Chin. Phys. B 21 096101
[16] Ahmed N, Ahmed M and Arafa H A 2018 Chin. Phys. B 27 094301
[17] Shao H B, Chen G P, He H and Jiang J H 2018 Chin. Phys B 27 126301
[18] Wilm M, Khelif A, Laude V and Ballandras S 2007 J. Acoust. Soc. Am. 122 786
[19] Ronda S, Aragón J, Iglesias E, et al. 2017 Transducers. [J]. Sensors (Basel, Switzerland) 2017 17
[20] Aragón J L, Quintero-Torres R, Domínguez-Juárez J L, Iglesias E, Ronda S and Francisco M E 2016 Ultrasonics 71 177
[21] Zhao T T, Lin S Y and Duan Y L 2018 Acta Phys. Sin. 67 224207 (in Chinese)
[22] Wang S and Lin S Y 2019 Ultrasonics 99 105954
[23] Lin J Y, Lin S Y, Wang S and Li Y 2021 Scientia Sinica Physica Mechanica & Astronomica 51 100
[24] Hu L Q and Lin S Y 2021 J. Appl. Acoust. 40 323
[25] Lin S Y 2004 J. Sound. Vib. 275 859
[26] Meng X D and Lin S Y 2019 J. Acoust. Soc. Am. 146 2170
[27] Ji B, Wang C, Hong L, Sang Y J and Lan Y 2019 AIP Adv. 9 125338
[28] Lin S Y and Zhang F C J 1993 J. Acoust. Soc. Am 94 2481
[29] Lin S Y 1994 J. Acoust. Soc. Am. 96 1620
[30] Newnham R E, Skinner D P and Cross L E 1978 Mater. Res. Bull. 13 525
[31] Smith W A and Auld B A 1991 IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 38 40
[1] First-principles study of a new BP2 two-dimensional material
Zhizheng Gu(顾志政), Shuang Yu(于爽), Zhirong Xu(徐知荣), Qi Wang(王琪), Tianxiang Duan(段天祥), Xinxin Wang(王鑫鑫), Shijie Liu(刘世杰), Hui Wang(王辉), and Hui Du(杜慧). Chin. Phys. B, 2022, 31(8): 086107.
[2] Erratum to “ Accurate GW0 band gaps and their phonon-induced renormalization in solids”
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2022, 31(5): 059901.
[3] High efficiency ETM-free perovskite cell composed of CuSCN and increasing gradient CH3NH3PbI3
Tao Wang(汪涛), Gui-Jiang Xiao(肖贵将), Ren Sun(孙韧), Lin-Bao Luo(罗林保), and Mao-Xiang Yi(易茂祥). Chin. Phys. B, 2022, 31(1): 018801.
[4] Atomic and electronic structures of p-type dopants in 4H-SiC
Lingyan Lu(卢玲燕), Han Zhang(张涵), Xiaowei Wu(吴晓维), Jing Shi(石晶), and Yi-Yang Sun(孙宜阳). Chin. Phys. B, 2021, 30(9): 096806.
[5] Tunable bandgaps and flat bands in twisted bilayer biphenylene carbon
Ya-Bin Ma(马亚斌), Tao Ouyang(欧阳滔), Yuan-Ping Chen(陈元平), and Yue-E Xie(谢月娥). Chin. Phys. B, 2021, 30(7): 077103.
[6] First-principles investigation of the valley and electrical properties of carbon-doped α-graphyne-like BN sheet
Bo Chen(陈波), Xiang-Qian Li(李向前), Lin Xue(薛林), Yan Han(韩燕), Zhi Yang(杨致), and Long-Long Zhang(张龙龙). Chin. Phys. B, 2021, 30(5): 057101.
[7] Microstructure, optical, and photoluminescence properties of β -Ga2O3 films prepared by pulsed laser deposition under different oxygen partial pressures
Rui-Rui Cui(崔瑞瑞), Jun Zhang(张俊), Zi-Jiang Luo(罗子江), Xiang Guo(郭祥), Zhao Ding(丁召), and Chao-Yong Deng(邓朝勇). Chin. Phys. B, 2021, 30(2): 028505.
[8] Accurate GW0 band gaps and their phonon-induced renormalization in solids
Tong Shen(申彤), Xiao-Wei Zhang(张小伟), Min-Ye Zhang(张旻烨), Hong Jiang(蒋鸿), and Xin-Zheng Li(李新征). Chin. Phys. B, 2021, 30(11): 117101.
[9] Ab-initio calculations of bandgap tuning of In1-xGaxY (Y = N, P) alloys for optoelectronic applications
Muhammad Rashid, Jamil M, Mahmood Q, Shahid M Ramay, Asif Mahmood A, and Ghaithan H M. Chin. Phys. B, 2021, 30(11): 116301.
[10] Thermal stability of magnetron sputtering Ge-Ga-S films
Lei Niu(牛磊), Yimin Chen(陈益敏), Xiang Shen(沈祥), Tiefeng Xu(徐铁峰). Chin. Phys. B, 2020, 29(8): 087803.
[11] Photoluminescence in wide band gap corundum Mg4Ta2O9 single crystals
Liang Li(李亮), Yu-Lu Zheng(郑雨露), Yu-Xin Hu(胡雨馨), Fang-Fei Li(李芳菲), Qiang Zhou(周强), Tian Cui(崔田). Chin. Phys. B, 2020, 29(8): 083301.
[12] High permeability and bimodal resonance structure of flaky soft magnetic composite materials
Xi Liu(刘曦), Peng Wu(吴鹏), Peng Wang(王鹏), Tao Wang(王涛), Liang Qiao(乔亮), Fa-Shen Li(李发伸). Chin. Phys. B, 2020, 29(7): 077506.
[13] Microwave-assisted synthesis of Mg:PbI2 nanostructures and their structural, morphological, optical, dielectric and electrical properties for optoelectronic technology
Mohd. Shkir, Ziaul Raza Khan, T Alshahrani, Kamlesh V. Chandekar, M Aslam Manthrammel, Ashwani Kumar, and S AlFaify$. Chin. Phys. B, 2020, 29(11): 116102.
[14] One-dimensional structure made of periodic slabs of SiO2/InSb offering tunable wide band gap at terahertz frequency range
Sepehr Razi, Fatemeh Ghasemi. Chin. Phys. B, 2019, 28(12): 124205.
[15] Electronic structure of YbB6 dependent on onsite Coulomb interaction U and internal parameter of B atom
Hong-Bin Wang(王宏斌), Li Zhang(张莉), Jie Duan(段婕). Chin. Phys. B, 2019, 28(11): 116201.
No Suggested Reading articles found!