Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(5): 058501    DOI: 10.1088/1674-1056/20/5/058501
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Influence of 60Co gamma radiation on fluorine plasma treated enhancement-mode high- electron-mobility transistor

Quan Si(全思), Hao Yue(郝跃), Ma Xiao-Hua(马晓华), and Yu Hui-You(于惠游)
Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, Institute of Microelectronics, Xidian University, Xi'an 710071, China
Abstract  AlGaN/GaN depletion-mode high-electron-mobility transistor (D-HEMT) and fluorine (F) plasma treated enhancement-mode high-electron-mobility transistor (E-HEMT) are exposed to 60Co gamma radiation with a dose of 1.6 Mrad (Si). No degradation is observed in the performance of D-HEMT. However, the maximum transconductance of E-HEMT is increased after radiation. The 2DEG density and the mobility are calculated from the results of capacitance–voltage measurement. The electron mobility decreases after fluorine plasma treatment and recovers after radiation. Conductance measurements in a frequency range from 10 kHz to 1 MHz are used to characterize the trapping effects in the devices. A new type of trap is observed in the F plasma treated E-HEMT compared with the D-HEMT, but the density of the trap decreases by radiation. Fitting of Gp/ω data yields the trap densities DT= (1 - 3) × 1012 cm-2· eV-1 and DT= (0.2-0.8) × 1012 cm-2·eV-1 before and after radiation, respectively. The time constant is 0.5 ms-6 ms. With F plasma treatment, the trap is introduced by etch damage and degrades the electronic mobility. After 60Co gamma radiation, the etch damage decreases and the electron mobility is improved. The gamma radiation can recover the etch damage caused by F plasma treatment.
Keywords:  AlGaN/GaN      enhancement-mode high-electron-mobility transistors      fluorine plasma treatment      60Co gamma radiation  
Received:  09 November 2010      Revised:  06 December 2010      Accepted manuscript online: 
PACS:  85.30.De (Semiconductor-device characterization, design, and modeling)  
  85.50.-n (Dielectric, ferroelectric, and piezoelectric devices)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60736033) and the Fundamental Research Funds for the Central Universities, China (Grant No. JY10000904009).

Cite this article: 

Quan Si(全思), Hao Yue(郝跃), Ma Xiao-Hua(马晓华), and Yu Hui-You(于惠游) Influence of 60Co gamma radiation on fluorine plasma treated enhancement-mode high- electron-mobility transistor 2011 Chin. Phys. B 20 058501

[1] Cai Y, Cheng Z, Yang Z, Tang W C W, Lau K M and Chen K J 2007 IEEE Electron Device Lett. 28 328
[2] Cai Y, Zhou Y, Lau K M and Chen K J 2006 IEEE Trans. Electron Devices 53 2207
[3] Feng Q, Gu W P, Hao Y, Ma X H, Wang C and Zhang J C 2009 Acta Phys. Sin. 58 511 (in Chinese)
[4] Huang S, Lin F, Liu F, Ma N, Shen B, Wang P, Wang T, Xu F J and Yao J Q 2009 Acta Phys. Sin. 58 1614 (in Chinese)
[5] Duan H T, F Q, Gu W P, Hao Y, Ma X H, Ni J Y and Zhang J C 2009 Acta Phys. Sin. 58 1601 (in Chinese)
[6] Cai Y, Zhou Y, Chen K J and Lau K M 2005 IEEE Electron Device Lett. 26 435
[7] Cai Y, Zhou Y, Lau K M and Chen K J 2006 IEEE Trans. Electron Devices 53 2207
[8] Cai Y, Cheng Z Q, Tang W C W, Lau K M and Chen K J 2006 IEEE Trans. Electron Devices 53 2223
[9] Palacios T, Suh C S, Chakraborty A, Keller S, DenBaars S P and Mishra U K 2006 IEEE Electron Device Lett. 27 428
[10] Yi C, Wang R and Huang W, Tang W C W, Lau K M and Chen K J 2007 IEDM 389
[11] Wang R N, Cai Y and Chen K J 2009 Solid-State Electronics 53 1
[12] Feng Q, Gu W P, Hao Y, Ma X H, Wang C and Zhang J C 2009 Acta Phys. Sin. 58 1161 (in Chinese)
[13] Membreno G A U, Dell J M, Parish G, Nener B D, Faraone L, Keller S and Mishra U K 2007 J. Appl. Phys. 101 054511
[14] Wang C, Quan S, Zhang J F, Hao Y, Feng Q and Chen J F 2009 Acta Phys. Sin. 58 1966 (in Chinese)
[15] Stoklas R, Gregusova D, Novak J, Vescan A and Kordos P 2008 Appl. Phys. Lett. 93 124103
[16] Shen L, Palacios T, Poblenz C, Corrion A, Chakraborty A, Fichtenbaum N, Keller S, Denbaars S P, Speck J S and Mishra U K 2006 IEEE Electron Device Lett. 27 214
[17] Chu R M, Shen L K, Fichtenbaum N, Brown D, Keller S and Mishra K U 2008 IEEE Electron Device Lett. 29 207 endfootnotesize
[1] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[2] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[3] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[4] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[5] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[6] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[7] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[8] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[9] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[10] High-frequency enhancement-mode millimeterwave AlGaN/GaN HEMT with an fT/fmax over 100 GHz/200 GHz
Sheng Wu(武盛), Minhan Mi(宓珉瀚), Xiaohua Ma(马晓华), Ling Yang(杨凌), Bin Hou(侯斌), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087102.
[11] Ferroelectric effect and equivalent polarization charge model of PbZr0.2Ti0.8O3 on AlGaN/GaN MIS-HEMT
Yao-Peng Zhao(赵垚澎), Chong Wang(王冲), Xue-Feng Zheng(郑雪峰), Xiao-Hua Ma(马晓华), Ang Li(李昂), Kai Liu(刘凯), Yun-Long He(何云龙), Xiao-Li Lu(陆小力) and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(5): 057302.
[12] Effects of notch structures on DC and RF performances of AlGaN/GaN high electron mobility transistors
Hao Zou(邹浩), Lin-An Yang(杨林安), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(4): 040502.
[13] Distribution of donor states on the surfaceof AlGaN/GaN heterostructures
Yue-Bo Liu(柳月波), Hong-Hui Liu(刘红辉), Jun-Yu Shen(沈俊宇), Wan-Qing Yao(姚婉青), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(12): 128102.
[14] Abnormal phenomenon of source-drain current of AlGaN/GaN heterostructure device under UV/visible light irradiation
Yue-Bo Liu(柳月波), Jun-Yu Shen(沈俊宇), Jie-Ying Xing(邢洁莹), Wan-Qing Yao(姚婉青), Hong-Hui Liu(刘红辉), Ya-Qiong Dai(戴雅琼), Long-Kun Yang(杨隆坤), Feng-Ge Wang(王风格), Yuan Ren(任远), Min-Jie Zhang(张敏杰), Zhi-Sheng Wu(吴志盛), Yang Liu(刘扬), and Bai-Jun Zhang(张佰君). Chin. Phys. B, 2021, 30(11): 117302.
[15] Impact of oxygen in electrical properties and hot-carrier stress-induced degradation of GaN high electron mobility transistors
Lixiang Chen(陈丽香), Min Ma(马敏), Jiecheng Cao(曹杰程), Jiawei Sun(孙佳惟), Miaoling Que(阙妙玲), and Yunfei Sun(孙云飞). Chin. Phys. B, 2021, 30(10): 108502.
No Suggested Reading articles found!