Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(2): 027303    DOI: 10.1088/1674-1056/20/2/027303
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Enhancement-mode AlGaN/GaN high electronic mobility transistors with thin barrier

Ma Xiao-Hua(马晓华)a)b),Yu Hui-You(于惠游)a), Quan Si(全思)b), Yang Li-Yuan(杨丽媛) b), Pan Cai-Yuan(潘才渊)a), Yang Ling(杨凌)b), Wang Hao(王昊)b), Zhang Jin-Cheng(张进成)b),and Hao Yue(郝跃) b)
a School of Technical Physics, Xidian University, Xi'an 710071, China; b Key Laboratory of Wide Band Gap Semiconductor Materials and Devices, School of Physics Technology, Xidian University, Xi'an 710071, China
Abstract  An enhancement-mode (E-mode) AlGaN/GaN high electron mobility transistor (HEMTs) was fabricated with 15-nm AlGaN barrier layer. E-mode operation was achieved by using fluorine plasma treatment and post-gate rapid thermal annealing. The thin barrier depletion-HEMTs with a threshold voltage typically around -1.7 V, which is higher than that of the 22-nm barrier depletion-mode HEMTs (-3.5 V). Therefore, the thin barrier is emerging as an excellent candidate to realize the enhancement-mode operation. With 0.6-μm gate length, the devices treated by fluorine plasma for 150-W RF power at 150 s exhibited a threshold voltage of 1.3 V. The maximum drain current and maximum transconductance are 300 mA/mm, and 177 mS/mm, respectively. Compared with the 22-nm barrier E-mode devices, VT of the thin barrier HEMTs is much more stable under the gate step-stress.
Keywords:  high electron mobility transistors      AlGaN/GaN      thin barrier      fluorine plasma treatment      threshold voltage  
Received:  14 August 2010      Revised:  09 October 2010      Accepted manuscript online: 
PACS:  73.40.Kp (III-V semiconductor-to-semiconductor contacts, p-n junctions, and heterojunctions)  
  73.61.Ey (III-V semiconductors)  
  78.30.Fs (III-V and II-VI semiconductors)  
Fund: Project supported by the Major Program and State Key Program of National Natural Science Foundation of China (Grant Nos. 60890191 and 60736033) and the National Key Science & Technology Special Project (Grant No. 2008ZX01002-002).

Cite this article: 

Ma Xiao-Hua(马晓华), Yu Hui-You(于惠游), Quan Si(全思), Yang Li-Yuan(杨丽媛), Pan Cai-Yuan(潘才渊), Yang Ling(杨凌), Wang Hao(王昊), Zhang Jin-Cheng(张进成), and Hao Yue(郝跃) Enhancement-mode AlGaN/GaN high electronic mobility transistors with thin barrier 2011 Chin. Phys. B 20 027303

[1] Rongming C, Likun S, Fichtenbaum N, Brown D, Zhen C, Keller S, DenBaars S P and Mishra U K 2008 wxIEEE Electron. Device Lett.29 974
[2] Takuma N, Misaichi T, Muneyoshi S, Toshiyuki O, Yuji A, Yasunori T and Yoshinobu A 2008 wxAppl. Phys. Lett.92 263
[3] Yang L, Hu G Z, Hao Y, Ma X H, Quan S, Yang L Y and Jiang S G 2010 wxChin. Phys. B19 047301
[4] Gu W P, Duan H T, Ni J Y, Hao Y, Zhang J C, Feng Q and Ma X H 2009 wxChin. Phys. B18 1601
[5] Wei W, Lin R B, Hao Y and Feng Q 2008 wxChin. Phys. B17 467
[6] Akira E, Yoshimi Y, Keiji I, Masataka H, Kohki H, Toshiaki M, Satoshi H and Takashi M 2004 wxJpn. J. Appl. Phys.43 2255
[7] Wataru S, Yoshiharu T, Masahiko K, Kunio T and Ichiro O 2006 wxIEEE Trans. Electron. Devices23 356
[8] Moon J S, Shihchang W, Wong D, Milosavljevic I, Conway A, Hashimoto P, Hu M, Antcliffe M and Micovic M 2005 wxIEEE Electron. Device Lett.26 348
[9] Lanford W B, Tanaka T, Otoki Y and Adesida I 2005 wxElectron. Lett.41 449
[10] Wang C, Zhang J F, Quan S, Hao Y, Zhang J C and Ma X H 2008 wxJ. Semicond.29 1682
[11] Cai Y, Cheng Z Q, Tang W C W, Lau K M and Chen K J 2006 wxIEEE Trans. Electron. Devices53 2223
[12] Ruonan W, Yichao W and Kevin J C 2008 wxJpn. J. Appl. Phys.47 2820
[13] Cai Y, Zhou Y, Chen K J and Lau K M 2005 wxIEEE Electron. Device Lett.26 435
[14] Quan S, Hao Y, Ma X H, Xie Y B and Ma J G 2009 wxJ. Semicond.30 1244002
[15] Toshihiro O, Toshihide K, Masahito K, Kenji I, Kozo M, Naoya O, Kazukiyo J and Naoki H 2009 wxPhys. Stat. Sol. C6 1365
[16] Travis J A, Marko J T, Michael A M, Jennifer K H, Karl D H, Charles R E Jr and Francis J K 2009 wxIEEE Trans. Electron. Devices30 1251
[1] Design and research of normally-off β-Ga2O3/4H-SiC heterojunction field effect transistor
Meixia Cheng(程梅霞), Suzhen Luan(栾苏珍), Hailin Wang(王海林), and Renxu Jia(贾仁需). Chin. Phys. B, 2023, 32(3): 037302.
[2] Reverse gate leakage mechanism of AlGaN/GaN HEMTs with Au-free gate
Xin Jiang(蒋鑫), Chen-Hao Li(李晨浩), Shuo-Xiong Yang(羊硕雄), Jia-Hao Liang(梁家豪), Long-Kun Lai(来龙坤), Qing-Yang Dong(董青杨), Wei Huang(黄威),Xin-Yu Liu(刘新宇), and Wei-Jun Luo(罗卫军). Chin. Phys. B, 2023, 32(3): 037201.
[3] Dynamic modeling of total ionizing dose-induced threshold voltage shifts in MOS devices
Guangbao Lu(陆广宝), Jun Liu(刘俊), Chuanguo Zhang(张传国), Yang Gao(高扬), and Yonggang Li(李永钢). Chin. Phys. B, 2023, 32(1): 018506.
[4] Migration of weakly bonded oxygen atoms in a-IGZO thin films and the positive shift of threshold voltage in TFTs
Chen Wang(王琛), Wenmo Lu(路文墨), Fengnan Li(李奉南), Qiaomei Luo(罗巧梅), and Fei Ma(马飞). Chin. Phys. B, 2022, 31(9): 096101.
[5] Simulation design of normally-off AlGaN/GaN high-electron-mobility transistors with p-GaN Schottky hybrid gate
Yun-Long He(何云龙), Fang Zhang(张方), Kai Liu(刘凯), Yue-Hua Hong(洪悦华), Xue-Feng Zheng(郑雪峰),Chong Wang(王冲), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(6): 068501.
[6] Improved device performance of recessed-gate AlGaN/GaN HEMTs by using in-situ N2O radical treatment
Xinchuang Zhang(张新创), Mei Wu(武玫), Bin Hou(侯斌), Xuerui Niu(牛雪锐), Hao Lu(芦浩), Fuchun Jia(贾富春), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 057301.
[7] Combined effects of cycling endurance and total ionizing dose on floating gate memory cells
Si-De Song(宋思德), Guo-Zhu Liu(刘国柱), Qi He(贺琪), Xiang Gu(顾祥), Gen-Shen Hong(洪根深), and Jian-Wei Wu(吴建伟). Chin. Phys. B, 2022, 31(5): 056107.
[8] Current oscillation in GaN-HEMTs with p-GaN islands buried layer for terahertz applications
Wen-Lu Yang(杨文璐), Lin-An Yang(杨林安), Fei-Xiang Shen(申飞翔), Hao Zou(邹浩), Yang Li(李杨), Xiao-Hua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(5): 058505.
[9] High power-added-efficiency AlGaN/GaN HEMTs fabricated by atomic level controlled etching
Xinchuang Zhang(张新创), Bin Hou(侯斌), Fuchun Jia(贾富春), Hao Lu(芦浩), Xuerui Niu(牛雪锐), Mei Wu(武玫), Meng Zhang(张濛), Jiale Du(杜佳乐), Ling Yang(杨凌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027301.
[10] High linearity AlGaN/GaN HEMT with double-Vth coupling for millimeter-wave applications
Pengfei Wang(王鹏飞), Minhan Mi(宓珉瀚), Meng Zhang(张濛), Jiejie Zhu(祝杰杰), Yuwei Zhou(周雨威), Jielong Liu(刘捷龙), Sijia Liu(刘思佳), Ling Yang(杨凌), Bin Hou(侯斌), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(2): 027103.
[11] Normally-off AlGaN/GaN heterojunction field-effect transistors with in-situ AlN gate insulator
Taofei Pu(蒲涛飞), Shuqiang Liu(刘树强), Xiaobo Li(李小波), Ting-Ting Wang(王婷婷), Jiyao Du(都继瑶), Liuan Li(李柳暗), Liang He(何亮), Xinke Liu(刘新科), and Jin-Ping Ao(敖金平). Chin. Phys. B, 2022, 31(12): 127701.
[12] A novel Si-rich SiN bilayer passivation with thin-barrier AlGaN/GaN HEMTs for high performance millimeter-wave applications
Zhihong Chen(陈治宏), Minhan Mi(宓珉瀚), Jielong Liu(刘捷龙), Pengfei Wang(王鹏飞), Yuwei Zhou(周雨威), Meng Zhang(张濛), Xiaohua Ma(马晓华), and Yue Hao(郝跃). Chin. Phys. B, 2022, 31(11): 117105.
[13] Fluorine-plasma treated AlGaN/GaN high electronic mobility transistors under off-state overdrive stress
Dongyan Zhao(赵东艳), Yubo Wang(王于波), Yanning Chen(陈燕宁), Jin Shao(邵瑾), Zhen Fu(付振), Fang Liu(刘芳), Yanrong Cao(曹艳荣), Faqiang Zhao(赵法强), Mingchen Zhong(钟明琛), Yasong Zhang(张亚松), Maodan Ma(马毛旦), Hanghang Lv(吕航航), Zhiheng Wang(王志恒), Ling Lv(吕玲), Xuefeng Zheng(郑雪峰), and Xiaohua Ma(马晓华). Chin. Phys. B, 2022, 31(11): 117301.
[14] Study on a novel vertical enhancement-mode Ga2O3 MOSFET with FINFET structure
Liangliang Guo(郭亮良), Yuming Zhang(张玉明), Suzhen Luan(栾苏珍), Rundi Qiao(乔润迪), and Renxu Jia(贾仁需). Chin. Phys. B, 2022, 31(1): 017304.
[15] High-frequency enhancement-mode millimeterwave AlGaN/GaN HEMT with an fT/fmax over 100 GHz/200 GHz
Sheng Wu(武盛), Minhan Mi(宓珉瀚), Xiaohua Ma(马晓华), Ling Yang(杨凌), Bin Hou(侯斌), and Yue Hao(郝跃). Chin. Phys. B, 2021, 30(8): 087102.
No Suggested Reading articles found!