CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Electronic structures of stacked layers quantum dots: influence of the non-perfect alignment and the applied electric field |
Jia Bo-Yong(贾博雍),Yu Zhong-Yuan(俞重远)†, Liu Yu-Min(刘玉敏), Han Li-Hong(韩利红), Yao Wen-Jie(姚文杰),Feng Hao(冯昊),and Ye Han (叶寒) |
Key Laboratory of Information Photonics and Optical Communications (Ministry of Education), Beijing University of Posts and Telecommunications, Beijing 100876, China |
|
|
Abstract Electronic structures of the artificial molecule comprising two truncated pyramidal quantum dots vertically coupled and embedded in the matrix are theoretically analysed via the finite element method. When the quantum dots are completely aligned, the electron energy levels decrease with the horizontally applied electric field. However, energy levels may have the maxima at non-zero electric field if the dots are staggered by a distance of several nanometers in the same direction of the electric field. In addition to shifting the energy levels, the electric field can also manipulate the electron wavefunctions confined in the quantum dots, in company with the non-perfect alignment.
|
Received: 10 September 2010
Revised: 25 September 2010
Accepted manuscript online:
|
PACS:
|
73.21.La
|
(Quantum dots)
|
|
73.63.Kv
|
(Quantum dots)
|
|
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2009AA03Z405), the National Natural Science Foundation of China (Grant Nos. 60908028 and 60971068), and the Fundamental Research Funds for the Central Universities (Grant No. BUPT2009RC0411). |
Cite this article:
Jia Bo-Yong(贾博雍),Yu Zhong-Yuan(俞重远), Liu Yu-Min(刘玉敏), Han Li-Hong(韩利红), Yao Wen-Jie(姚文杰),Feng Hao(冯昊),and Ye Han (叶寒) Electronic structures of stacked layers quantum dots: influence of the non-perfect alignment and the applied electric field 2011 Chin. Phys. B 20 027302
|
[1] |
Huffaker D L, Park G, Zou Z, Shchekin O B and Deppe D G 1998 Appl. Phys. Lett. 73 2566
|
[2] |
Wang Z G, Chen Y H, Liu F Q and Xu B 2001 J. Cryst. Growth 227 1132
|
[3] |
Sellin R L, Ribbat C, Bimberg D, Rinner F, Konstanzer H, Kelemen M T and Mikulla M 2002 Electron. Lett. 38 883
|
[4] |
Chu L, Zrenner A, Bohm G and Abstreiter G 1999 Appl. Phys. Lett. 75 3599
|
[5] |
Chen S D, Chen Y Y and Lee S C 2005 Appl. Phys. Lett. 86 253104
|
[6] |
Michler P, Kiraz A, Becher C, Schoenfeld W V, Petroff P M, Zhang L D, Hu E and Imamouglu A 2000 Science 290 2282
|
[7] |
Pelton M, Santori C, Vuvckovi'c J, Zhang B Y, Solomon G S, Plant J and Yamamoto Y 2002 Phys. Rev. Lett. 89 233602
|
[8] |
Ledentsov N N, Shchukin V A, Grundmann M, Kirstaedter N, Böhrer J, Schmidt O, Bimberg D, Ustinov V M, Egorov A Y, Zhukov A E, Kop'ev P S, Zaisev S V, Gordeev N Y, Alferov Z I, Borovkov A I, Kosogov A O, Ruvimov S S, Werner P, Gösele U and Heydenreich J 1996 Phys. Rev. B 54 8743
|
[9] |
Pei Q X, Lu C and Wang Y Y 2003 J. Appl. Phys. 93 1487
|
[10] |
Szafran B, Peeters F M and Bednarek S 2007 Phys. Rev. B 75 115303
|
[11] |
Terzis A F, Kosionis S G and Paspalakis E 2007 J. Phys. B 40 S331
|
[12] |
Persano A, Cola A, Taurino A, Catalano M, Lomascolo M, Convertino A, Leo G, Cerri L, Vasanelli A and Vasanelli L 2007 J. Appl. Phys. 102 094314
|
[13] |
Voskoboynikov O 2008 Phys. Rev. B 78 113310
|
[14] |
Li S S and Xia J B 2005 Appl. Phys. Lett. 87 043102
|
[15] |
Billaud B, Picco M and Truong T T 2009 J. Phys.: Condens. Matter 21 395302
|
[16] |
Krenner H J, Sabahtil M, Clark E C, Kress A, Schuh D, Bichler M, Absteiter G and Finley J J 2005 Phys. Rev. Lett. 94 057402
|
[17] |
Stinaff E A, Scheibner M, Bracker A S, Pomonarev I V, Korenev V L, Ware M E, Doty M F, Reinecke T L and Gammon D 2005 Science 311 636
|
[18] |
Bracker A S, Scheibner M, Doty M F, Stinaff E A, Pomonarev I V, Kim J C, Whitman L J, Reinecke T L and Gammon D 2006 Appl. Phys. Lett. 89 233110
|
[19] |
Liu Y M, Yu Z Y and Ren X M 2009 Chin. Phys. B 18 16
|
[20] |
Califano M and Harrison P 2002 J. Appl. Phys. 91 389
|
[21] |
Ye H, Lu P F, Yu Z Y, Song Y X, Wang D L and Wang S M 2009 Nano Lett. 9 1921
|
[22] |
Liu Y M, Yu Z Y, Jia B Y, Xu Z H, Yao W J, Chen Z H, Lu P F and Han L H 2009 Chin. Phys. B 18 4667
|
[23] |
Gatti R, Marzegalli A, Zinovyev V A, Montalenti F and Miglio L 2008 Phys. Rev. B 78 184104
|
[24] |
Belytschko T, Gracie R and Ventura G 2009 Modelling Simul. Mater. Sci. Eng. 17 043001
|
[25] |
Ye H, Lu P F, Yu Z Y, Yao W J, Chen Z H, Jia B Y and Liu Y M 2010 Chin. Phys. B 19 047302
|
[26] |
Zhao W, Yu Z Y and Liu Y M 2010 Chin. Phys. B 19 067302
|
[27] |
Yao W J, Yu Z Y and Liu Y M 2010 Chin. Phys. B 19 077101
|
[28] |
Vurgaftman I, Meyer J R and Ram-Mohan L R 2001 J. Appl. Phys. 89 5815
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|