CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
The Wiedemann–Franz law in a normal metal–superconductor junction |
R Ghanbari and G Rashedi† |
Department of Physics, Faculty of Sciences, University of Isfahan, 81744 Isfahan, Iran |
|
|
Abstract In this paper the influence of superconducting correlations on the thermal and charge conductances in a normal metal-superconductor (NS) junction in the clean limit is studied theoretically. First we solve the quasiclassical Eilenberger equations, and using the obtained density of states we can acquire the thermal and electrical conductances for the NS junction. Then we compare the conductance in a normal region of an NS junction with that in a single layer of normal metal (N). Moreover, we study the Wiedemann-Franz (WF) law for these two cases (N and NS). From our calculations we conclude that the behaviour of the NS junction does not conform to the WF law for all temperatures. The effect of the thickness of normal metal on the thermal conductivity is also theoretically investigated in the paper.
|
Received: 05 June 2011
Revised: 26 July 2011
Accepted manuscript online:
|
PACS:
|
74.45.+c
|
(Proximity effects; Andreev reflection; SN and SNS junctions)
|
|
74.45.+r
|
|
|
74.25.Fy
|
|
|
74.25.Bt
|
(Thermodynamic properties)
|
|
Cite this article:
R Ghanbari and G Rashedi The Wiedemann–Franz law in a normal metal–superconductor junction 2011 Chin. Phys. B 20 127401
|
[1] |
Guron S, Pothier H, Birge N O, Esteve D and Devoret M H 1996 Phys. Rev. Lett. 77 3025
|
[2] |
Courtois H, Charlat P, Gandit Ph, Mailly D and Pannetier B 1999 J. Low Temp. Phys. 116 187
|
[3] |
Pannetier B and Courtois H 2000 J. Low Temp. Phys. 188 599
|
[4] |
Moussy N, Courtois H and Pannetier B 2001 Europhys. Lett. 55 861
|
[5] |
Dubos P, Courtois H, Pannetier B, Wilkhelm F K, Zaikin A D and Schn G 2001 Phys. Rev. B 63 064502
|
[6] |
Rashedi G and Kolesnichenko Yu A 2004 Phys. Rev. B 69 024516
|
[7] |
Rashedi G 2010 Chin. Phys. B 19 107303
|
[8] |
Taddei F, Giazotto F and Fazio R 2005 J. Comput. Theor. Nanosci. 2 329
|
[9] |
Del Maestro A, Rosenow B, Shah N and Sachdev S 2008 Phys. Rev. B 77 180501
|
[10] |
Linder J, Yokoyama Y, Tanaka Y, Asano Y and Sudbupphi A 2008 Phys. Rev. B 77 174505
|
[11] |
Durst A C and Sachdev S 2009 Phys. Rev. B 80 054518
|
[12] |
Levchenko A 2010 Phys. Rev. B 81 012507
|
[13] |
Andersson A and Lidmar J 2010 Phys. Rev. B 81 060508
|
[14] |
Golubev D S and Zaikin A D 2010 Phys. Rev. B 82 134508
|
[15] |
Ruiz H S, Lopez C and Badia-Majos A 2011 Phys. Rev. B 83 134508
|
[16] |
Mahmoodi R, Shevchenko S N and Kolesnichenko Yu A 2002 Low Temp. Phys. 28 184
|
[17] |
Mahmoodi R, Shevchenko S N and Kolesnichenko Yu A 2002 Fiz. Nizk. Temp. 28 262
|
[18] |
Rashedi G and Kolesnichenko Yu A 2005 Low Temp. Phys. 31 481
|
[19] |
Rashedi G and Kolesnichenko Yu A 2005 Fiz. Nizk. Temp. 31 634
|
[20] |
Kittel C 2004 Introduction to Solid State Physics (Berkeley: University of California Press)
|
[21] |
Jones W and March N H 1685 Theoretical Solid State Physics (New York: Courier Dover Publications)
|
[22] |
Poole C P, Farach H A, Creswick R J and Prozorov R 2007 Superconductivity 2nd edn. (London: Academic Press)
|
[23] |
Poole C P 2000 Handbook of Superconductivity (San Diego: Academic Press)
|
[24] |
Alidoust M, Rashedi G, Linder J and Sudbo A 2010 Phys. Rev. B 82 014532
|
[25] |
Rahnavard Y, Rashedi G and Yokoyama T 2010 J. Phys: Condens. Matter 22 415701
|
[26] |
Rashedi G, Rahnavard Y and Kolesnichenko Yu A 2010 Low Temp. Phys. 36 205
|
[27] |
Rashedi G, Rahnavard Y and Kolesnichenko Yu A 2010 Fiz. Nizk. Temp. 36 262
|
[28] |
Golubov A A, Kupriyanov M Y and Il'ichev E 2004 Rev. Mod. Phys. 76 411
|
[29] |
Belzig W, Bruder C and Schon G 1996 Phys. Rev. B 54 9443
|
[30] |
Scheer E, Belzig W, Naveh Y, Devoret M H, Esteve D and Urbina C 2001 Phys. Rev. Lett. 86 284
|
[31] |
Rubio-Bollinger G, de las Heras C, Bascones E, Agrat N, Guinea F and Vieira S 2003 Phys. Rev. B 67 121407(R)
|
[32] |
Clarke J 1969 Proc. R. Soc. London. A 308 447
|
[33] |
Ishida S, Nakajima M, Tomioka Y, Ito T, Miyazawa K, Kito H, Lee C H, Ishikado M, Shamoto S, Iyo A, Eisaki H, Kojima K M and Uchida S 2010 Phys. Rev. B 81 094515
|
[34] |
Koerting V, Andersen B M, Flensberg K and Paaske J 2010 Phys. Rev. B 82 245108
|
[35] |
de Gennes P G 1964 Rev. Mod. Phys. 36 255
|
[36] |
de Gennes P G 1996 Superconductivity of Metals and Alloys (New York: Benjamin)
|
[37] |
Buzdin A I 2005 Rev. Mod. Phys. 77 935
|
[38] |
Graf M J, Yip S K, Sauls J A and Rainer D 1996 Phys. Rev. B 53 15147
|
[39] |
Wiedemann G and Franz R 1853 Ann. Phys. 89 497
|
[40] |
Ronning F, Hill R W, Sutherland M, Hawthorn D G, Tanatar M A, Paglione J, Taillefer L, Graf M J, Perry R S, Maeno Y and Mackenzie A P 2006 Phys. Rev. Lett. 97 067005
|
[41] |
Hill R W, Proust C, Taillefer L, Fournier P and Greene R L 2001 Nature (London) 414 711
|
[42] |
van Harlingen D J, Heidel D F and Garland J C 1980 Phys. Rev. B 20 1842
|
[43] |
Tanatar M A, Reid J P, Shakeripour H, Luo X G, Doiron-Leyraud N, Ni N, Bud'ko S L, Canfield P C, Prozorov R and Taillefer L 2010 Phys. Rev. Lett. 104 067002
|
[44] |
Mattis D C and Bardeen J 1958 Phys. Rev. 111 412
|
[45] |
Geilikman B T 1958 Zh. Eksp. Teor. Fiz. 34 1042 [1958 Sov. Phys. JETP 34 L721]
|
[46] |
Kadanoff L P and Martin P 1961 Phys. Rev. 124 670
|
[47] |
Tewordt L 1962 Phys. Rev. 128 12
|
[48] |
Eckern U 1983 J. Low Temp. Phys. 50 489
|
[49] |
Machida Y, Sakai S, Izawa K, Okuyama H and Watanabe T 2011 Phys. Rev. Lett. 106 107002
|
[50] |
Kopnin N B, Mel'nikov A S, Pozdnyakova V I, Ryzhov D A, Shereshevskii I A and Vinokur V M 2007 Phys. Rev. B 57 024514
|
[51] |
Rabani H, Taddei F, Bourgeois O, Fazio R and Giazotto F 2008 Phys. Rev. B 78 012503
|
[52] |
Tewordt L and Fay D 2003 Phys. Rev. B 67 134524
|
[53] |
Spivak B, Oreto P and Kivelson S A 2008 Phys. Rev. B 77 214523
|
[54] |
Podolsky D, Vishwanath A, Moore J and Sachdev S 2007 Phys. Rev. B 75 014520
|
[55] |
Houghton A, Lee S and Marston J B 2002 Phys. Rev. B 65 220503
|
[56] |
Blonder G E, Tinkham M and Klapwijk T M 1982 Phys. Rev. B 25 4515
|
[57] |
Andreev A F 1964 Sov. Phys. JETP 19 1228
|
[58] |
Bardas A and Averin D 1995 Phys. Rev. B 52 12873
|
[59] |
Devyatov I A, Kuprianov M Y, Kuzmin L S, Golubov A A and Willander M 2000 J. Exp. Theor. Phys. 90 1050
|
[60] |
Kohen A and Deutscher G 2001 Phys. Rev. B 64 060506
|
[61] |
Eilenberger G 1968 Z. Phys. 214 195
|
[62] |
Larkin A I and Ovchinnikov Y N 1968 Sov. Phys. JETP 26 1200
|
[63] |
Amin M H S, Omelyanchouk A N, Rashkeev S N, Coury M and Zagoskin A M 2002 Physica B: Condens. Matter 318 162
|
[64] |
Schmidt V V, Muller P and Ustinov A V (eds.) 1997 The Physics of Superconductors (New York: Springer)
|
[65] |
Zareyan M, Belzig W and Nazarov Y V 2002 Phys. Rev. B 65 184505
|
[66] |
Bennemann K H and Ketterson J B (eds.) 2008 Superconductivity: Conventional and Unconventional Superconductors Vol. 1 (New York: Springer) pp. 280-283
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|