Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(5): 057502    DOI: 10.1088/1674-1056/ab8209
Special Issue: SPECIAL TOPIC — Topological 2D materials
SPECIAL TOPIC—Topological 2D materials Prev   Next  

Magnetic field enhanced single particle tunneling in MoS2-superconductor vertical Josephson junction

Wen-Zheng Xu(徐文正)1, Lai-Xiang Qin(秦来香)1, Xing-Guo Ye(叶兴国)1, Fang Lin(林芳)1, Da-Peng Yu(俞大鹏)2, Zhi-Min Liao(廖志敏)1,3
1 State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China;
2 Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China;
3 Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China
Abstract  As a prototypical transition-metal dichalcogenide semiconductor, MoS2 possesses strong spin-orbit coupling, which provides an ideal platform for the realization of interesting physical phenomena. Here, we report the magnetotransport properties in NbN-MoS2-NbN sandwich junctions at low temperatures. Above the critical temperature around ~11 K, the junction resistance shows weak temperature dependence, indicating a tunneling behavior. While below ~11 K, nearly zero junction resistance is observed, indicating the superconducting state in the MoS2 layer induced by the superconducting proximity effect. When a perpendicular magnetic field ~1 T is applied, such proximity effect is suppressed, accompanying with insulator-like temperature-dependence of the junction resistance. Intriguingly, when further increasing the magnetic field, the junction conductance is significantly enhanced, which is related to the enhanced single particle tunneling induced by the decrease of the superconducting energy gap with increasing magnetic fields. In addition, the possible Majorana zero mode on the surface of MoS2 can further lead to the enhancement of the junction conductance.
Keywords:  proximity effect      transition metal dichalcogenides      magnetotransport  
Received:  14 January 2020      Revised:  11 February 2020      Accepted manuscript online: 
PACS:  74.45.+c (Proximity effects; Andreev reflection; SN and SNS junctions)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  73.43.Qt (Magnetoresistance)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0703703 and 2016YFA0300802) and the National Natural Science Foundation of China (Grant Nos. 91964201, 61825401, and 11774004).
Corresponding Authors:  Zhi-Min Liao     E-mail:  liaozm@pku.edu.cn

Cite this article: 

Wen-Zheng Xu(徐文正), Lai-Xiang Qin(秦来香), Xing-Guo Ye(叶兴国), Fang Lin(林芳), Da-Peng Yu(俞大鹏), Zhi-Min Liao(廖志敏) Magnetic field enhanced single particle tunneling in MoS2-superconductor vertical Josephson junction 2020 Chin. Phys. B 29 057502

[1] Zeng S M, Zhao Y C, Li G and Ni J 2016 Phys. Rev. B 94 024501
[2] Klinovaja J and Loss D 2013 Phys. Rev. B 88 075404
[3] Roldán R, Cappelluti E and Guinea F 2013 Phys. Rev. B 88 054515
[4] Zhang R Y, Tsai I L, Chapman J, Khestanova E, Waters J and Grigorieva I V 2016 Nano Lett. 16 629
[5] Costanzo D, Jo S, Berger H and Morpurgo A F 2016 Nat. Nanotechnol. 11 339
[6] Taniguchi K, Matsumoto A, Shimotani H and Takagi H 2012 Appl. Phys. Lett. 101 042603
[7] Saito Y, Nakamura Y, Bahramy M S, Kohama Y, Ye J T, Kasahara Y, Nakagawa Y, Onga M, Tokunaga M, Nojima T, Yanase Y and Iwasa Y 2016 Nat. Phys. 12 144
[8] Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R and Iwasa Y 2012 Science 338 1193
[9] Yuan N F Q, Mak K F and Law K T 2014 Phys. Rev. Lett. 113 097001
[10] Lu J M, Zheliuk O, Leermakers I, Yuan N F Q, Zeitler U, Law K T and Ye J T 2015 Science 350 1353
[11] Zhou B T, Yuan N F Q, Jiang H L and Law K T 2016 Phys. Rev. B 93 1850501(R)
[12] Ganatra R and Zhang Q 2014 ACS Nano 8 4074
[13] Zhang H, Liu C X, Gazibegovic S, Xu D, Logan J A, Wang G, Loo N, Bommer J D S, Moor M W A, Car D, Op het Veld R L M, Veldhoven P J, Koelling S, Verheijen M A, Pendharkar M, Pennachio D J, Shojaei B, Lee J S, Palmstrom C J, Bakkers E P A M, Sarma S D and Kouwenhoven L P 2018 Nature 556 74
[14] Jose P S, Prada E and Aguado R 2014 Phys. Rev. Lett. 112 137001
[15] Gül Ö Zhang H, Bommer J D S, Moor M W A, Car D, Plissard S R, Bakkers E P A M, Geresdi A, Watanabe K, Taniguchi T and Kouwenhoven L P 2018 Nat. Nanotechnol 13 192
[16] Lin C H, Sau J D and Sarma S D 2012 Phys. Rev. B 86 224511
[17] Alicea J 2010 Phys. Rev. B 81 125318
[18] Kitaev A Y 2003 Ann. Phys. 303 2
[19] Halperin B I, Oreg Y, Stern A, Refael G, Alicea J and von Oppen F 2012 Phys. Rev. B 85 144501
[20] Elliott S R and Franz M 2015 Rev. Mod. Phys. 87 137
[21] Mathur M P, Deis D W and Gavaler J R 1972 J. Appl. Phys. 43 3158
[22] Beck M, Klammer M, Lang S, Leiderer P, Kabanov V V, Gol'tsman G N and Demsar J 2011 Phys. Rev. Lett. 107 177007
[23] Noat Y, Cherkez V, Brun C, Cren T, Carbillet C, Debontridder F, Ilin K, Siegel M, Semenov A, Hübers H W and Roditchev D 2013 Phys. Rev. B 88 014503
[24] Georgiou T, Jalil R, Belle B D, Britnell L, Gorbachev R V, Morozov S V, Kim Y J, Gholinia A, Haigh S J, Makarovsky O, Eaves L, Ponomarenko L A, Geim A K, Novoselov K S and Mishchenko A 2013 Nat. Nanotechnol. 8 100
[25] Takayanagi H and Kawakami T 1985 Phys. Rev. Lett. 54 2449
[26] McMillan W L 1968 Phys. Rev. 175 537
[27] Zhang L, Yan Y, Wu H C, Yu D P, Liao Z M 2016 ACS Nano. 10 3816
[28] Britnell L, Gorbachev R V, Jalil R, Belle B D, Schedin F, Mishchenko A, Georgiou T, Katsnelson M I, Eaves L, Morozov S V, Peres N M R, Leist J, Geim A K, Novoselov K S and Ponomarenko L A 2012 Science 335 947
[29] Kleinsasser A W, Miller R E, Mallison W H and Arnold G B 1994 Phys. Rev. Lett. 72 1738
[30] Blonder G E, Tinkham M and lapwijk T M K 1982 Phys. Rev. B 25 4515
[31] Tkachov G and Fal'ko V I 2004 Phys. Rev. B 69 092503
[32] Kleinsasser A W and Kastalsky A 1993 Phys. Rev. B. 47 8361
[33] Koppinen P J, Kühn T and Maasilta I J 2009 J. Low Temp. Phys. 154 179
[34] Dynes R C, Narayanamurti V and Garno J P 1978 Phys. Rev. Lett. 41 1509
[35] MolinaS ánchez A, Sangalli D, Hummer K, Marini A and Wirtz L 2013 Phys. Rev. B 88 045412
[1] Transition-edge sensors using Mo/Au/Au tri-layer films
Hubing Wang(王沪兵), Yue Lv(吕越), Dongxue Li(李冬雪), Yue Zhao(赵越), Bo Gao(高波), and Zhen Wang(王镇). Chin. Phys. B, 2023, 32(2): 028501.
[2] Weak localization in disordered spin-1 chiral fermions
Shaopeng Miao(苗少鹏), Daifeng Tu(涂岱峰), and Jianhui Zhou(周建辉). Chin. Phys. B, 2023, 32(1): 017502.
[3] Exciton luminescence and many-body effect of monolayer WS2 at room temperature
Jian-Min Wu(吴建民), Li-Hui Li(黎立辉), Wei-Hao Zheng(郑玮豪), Bi-Yuan Zheng(郑弼元), Zhe-Yuan Xu(徐哲元), Xue-Hong Zhang(张学红), Chen-Guang Zhu(朱晨光), Kun Wu(吴琨), Chi Zhang(张弛), Ying Jiang(蒋英),Xiao-Li Zhu(朱小莉), and Xiu-Juan Zhuang(庄秀娟). Chin. Phys. B, 2022, 31(5): 057803.
[4] Magnetic proximity effect induced spin splitting in two-dimensional antimonene/Fe3GeTe2 van der Waals heterostructures
Xiuya Su(苏秀崖), Helin Qin(秦河林), Zhongbo Yan(严忠波), Dingyong Zhong(钟定永), and Donghui Guo(郭东辉). Chin. Phys. B, 2022, 31(3): 037301.
[5] Electronic properties and interfacial coupling in Pb islands on single-crystalline graphene
Jing-Peng Song(宋靖鹏) and Ang Li(李昂). Chin. Phys. B, 2022, 31(3): 037401.
[6] Topological superconductivity in Janus monolayer transition metal dichalcogenides
Xian-Dong Li(李现东), Zuo-Dong Yu(余作东), Wei-Peng Chen(陈伟鹏), and Chang-De Gong(龚昌德). Chin. Phys. B, 2022, 31(11): 110304.
[7] Controlled vapor growth of 2D magnetic Cr2Se3 and its magnetic proximity effect in heterostructures
Danliang Zhang(张丹亮), Chen Yi(易琛), Cuihuan Ge(葛翠环), Weining Shu(舒维宁), Bo Li(黎博), Xidong Duan(段曦东), Anlian Pan(潘安练), and Xiao Wang(王笑). Chin. Phys. B, 2021, 30(9): 097601.
[8] Polarized photoluminescence spectroscopy in WS2, WSe2 atomic layers and heterostructures by cylindrical vector beams
Lijun Wu(吴莉君), Cuihuan Ge(葛翠环), Kai Braun, Mai He(贺迈), Siman Liu(刘思嫚), Qingjun Tong(童庆军), Xiao Wang(王笑), and Anlian Pan(潘安练). Chin. Phys. B, 2021, 30(8): 087802.
[9] Thermally induced band hybridization in bilayer-bilayer MoS2/WS2 heterostructure
Yanchong Zhao(赵岩翀), Tao Bo(薄涛), Luojun Du(杜罗军), Jinpeng Tian(田金朋), Xiaomei Li(李晓梅), Kenji Watanabe, Takashi Taniguchi, Rong Yang(杨蓉), Dongxia Shi(时东霞), Sheng Meng(孟胜), Wei Yang(杨威), and Guangyu Zhang(张广宇). Chin. Phys. B, 2021, 30(5): 057801.
[10] Metal substrates-induced phase transformation of monolayer transition metal dichalcogenides for hydrogen evolution catalysis
Zhe Wang(王喆) and Wenguang Zhu(朱文光). Chin. Phys. B, 2021, 30(11): 116401.
[11] Evolution of electrical and magnetotransport properties with lattice strain in La0.7Sr0.3MnO3 film
Zhi-Bin Ling(令志斌), Qing-Ye Zhang(张庆业), Cheng-Peng Yang(杨成鹏), Xiao-Tian Li(李晓天), Wen-Shuang Liang(梁文双), Yi-Qian Wang(王乙潜), Huai-Wen Yang(杨怀文), Ji-Rong Sun(孙继荣). Chin. Phys. B, 2020, 29(9): 096802.
[12] Thickness-dependent structural stability and transition in molybdenum disulfide under hydrostatic pressure
Jiansheng Dong(董健生), Gang Ouyang(欧阳钢). Chin. Phys. B, 2020, 29(8): 086403.
[13] Nanofabrication of 50 nm zone plates through e-beam lithography with local proximity effect correction for x-ray imaging
Jingyuan Zhu(朱静远), Sichao Zhang(张思超), Shanshan Xie(谢珊珊), Chen Xu(徐晨), Lijuan Zhang(张丽娟), Xulei Tao(陶旭磊), Yuqi Ren(任玉琦), Yudan Wang(王玉丹), Biao Deng(邓彪), Renzhong Tai(邰仁忠), Yifang Chen(陈宜方). Chin. Phys. B, 2020, 29(4): 047501.
[14] Effect of strain on exciton dynamics in monolayer WS2
Lu Zhang(张璐), Da-Wei He(何大伟), Jia-Qi He(何家琪), Yang Fu(付洋), Yong-Sheng Wang(王永生). Chin. Phys. B, 2019, 28(8): 087201.
[15] Tunable 2H-TaSe2 room-temperature terahertz photodetector
Jin Wang(王瑾), Cheng Guo(郭程), Wanlong Guo(郭万龙), Lin Wang(王林), Wangzhou Shi(石旺舟), Xiaoshuang Chen(陈效双). Chin. Phys. B, 2019, 28(4): 046802.
No Suggested Reading articles found!