Special Issue:
SPECIAL TOPIC — Topological 2D materials
|
SPECIAL TOPIC—Topological 2D materials |
Prev
Next
|
|
|
Magnetic field enhanced single particle tunneling in MoS2-superconductor vertical Josephson junction |
Wen-Zheng Xu(徐文正)1, Lai-Xiang Qin(秦来香)1, Xing-Guo Ye(叶兴国)1, Fang Lin(林芳)1, Da-Peng Yu(俞大鹏)2, Zhi-Min Liao(廖志敏)1,3 |
1 State Key Laboratory for Mesoscopic Physics and Collaborative Innovation Center of Quantum Matter, School of Physics, Peking University, Beijing 100871, China; 2 Shenzhen Institute for Quantum Science and Engineering and Department of Physics, Southern University of Science and Technology, Shenzhen 518055, China; 3 Frontiers Science Center for Nano-optoelectronics, Peking University, Beijing 100871, China |
|
|
Abstract As a prototypical transition-metal dichalcogenide semiconductor, MoS2 possesses strong spin-orbit coupling, which provides an ideal platform for the realization of interesting physical phenomena. Here, we report the magnetotransport properties in NbN-MoS2-NbN sandwich junctions at low temperatures. Above the critical temperature around ~11 K, the junction resistance shows weak temperature dependence, indicating a tunneling behavior. While below ~11 K, nearly zero junction resistance is observed, indicating the superconducting state in the MoS2 layer induced by the superconducting proximity effect. When a perpendicular magnetic field ~1 T is applied, such proximity effect is suppressed, accompanying with insulator-like temperature-dependence of the junction resistance. Intriguingly, when further increasing the magnetic field, the junction conductance is significantly enhanced, which is related to the enhanced single particle tunneling induced by the decrease of the superconducting energy gap with increasing magnetic fields. In addition, the possible Majorana zero mode on the surface of MoS2 can further lead to the enhancement of the junction conductance.
|
Received: 14 January 2020
Revised: 11 February 2020
Accepted manuscript online:
|
PACS:
|
74.45.+c
|
(Proximity effects; Andreev reflection; SN and SNS junctions)
|
|
75.47.-m
|
(Magnetotransport phenomena; materials for magnetotransport)
|
|
73.43.Qt
|
(Magnetoresistance)
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2018YFA0703703 and 2016YFA0300802) and the National Natural Science Foundation of China (Grant Nos. 91964201, 61825401, and 11774004). |
Corresponding Authors:
Zhi-Min Liao
E-mail: liaozm@pku.edu.cn
|
Cite this article:
Wen-Zheng Xu(徐文正), Lai-Xiang Qin(秦来香), Xing-Guo Ye(叶兴国), Fang Lin(林芳), Da-Peng Yu(俞大鹏), Zhi-Min Liao(廖志敏) Magnetic field enhanced single particle tunneling in MoS2-superconductor vertical Josephson junction 2020 Chin. Phys. B 29 057502
|
[1] |
Zeng S M, Zhao Y C, Li G and Ni J 2016 Phys. Rev. B 94 024501
|
[2] |
Klinovaja J and Loss D 2013 Phys. Rev. B 88 075404
|
[3] |
Roldán R, Cappelluti E and Guinea F 2013 Phys. Rev. B 88 054515
|
[4] |
Zhang R Y, Tsai I L, Chapman J, Khestanova E, Waters J and Grigorieva I V 2016 Nano Lett. 16 629
|
[5] |
Costanzo D, Jo S, Berger H and Morpurgo A F 2016 Nat. Nanotechnol. 11 339
|
[6] |
Taniguchi K, Matsumoto A, Shimotani H and Takagi H 2012 Appl. Phys. Lett. 101 042603
|
[7] |
Saito Y, Nakamura Y, Bahramy M S, Kohama Y, Ye J T, Kasahara Y, Nakagawa Y, Onga M, Tokunaga M, Nojima T, Yanase Y and Iwasa Y 2016 Nat. Phys. 12 144
|
[8] |
Ye J T, Zhang Y J, Akashi R, Bahramy M S, Arita R and Iwasa Y 2012 Science 338 1193
|
[9] |
Yuan N F Q, Mak K F and Law K T 2014 Phys. Rev. Lett. 113 097001
|
[10] |
Lu J M, Zheliuk O, Leermakers I, Yuan N F Q, Zeitler U, Law K T and Ye J T 2015 Science 350 1353
|
[11] |
Zhou B T, Yuan N F Q, Jiang H L and Law K T 2016 Phys. Rev. B 93 1850501(R)
|
[12] |
Ganatra R and Zhang Q 2014 ACS Nano 8 4074
|
[13] |
Zhang H, Liu C X, Gazibegovic S, Xu D, Logan J A, Wang G, Loo N, Bommer J D S, Moor M W A, Car D, Op het Veld R L M, Veldhoven P J, Koelling S, Verheijen M A, Pendharkar M, Pennachio D J, Shojaei B, Lee J S, Palmstrom C J, Bakkers E P A M, Sarma S D and Kouwenhoven L P 2018 Nature 556 74
|
[14] |
Jose P S, Prada E and Aguado R 2014 Phys. Rev. Lett. 112 137001
|
[15] |
Gül Ö Zhang H, Bommer J D S, Moor M W A, Car D, Plissard S R, Bakkers E P A M, Geresdi A, Watanabe K, Taniguchi T and Kouwenhoven L P 2018 Nat. Nanotechnol 13 192
|
[16] |
Lin C H, Sau J D and Sarma S D 2012 Phys. Rev. B 86 224511
|
[17] |
Alicea J 2010 Phys. Rev. B 81 125318
|
[18] |
Kitaev A Y 2003 Ann. Phys. 303 2
|
[19] |
Halperin B I, Oreg Y, Stern A, Refael G, Alicea J and von Oppen F 2012 Phys. Rev. B 85 144501
|
[20] |
Elliott S R and Franz M 2015 Rev. Mod. Phys. 87 137
|
[21] |
Mathur M P, Deis D W and Gavaler J R 1972 J. Appl. Phys. 43 3158
|
[22] |
Beck M, Klammer M, Lang S, Leiderer P, Kabanov V V, Gol'tsman G N and Demsar J 2011 Phys. Rev. Lett. 107 177007
|
[23] |
Noat Y, Cherkez V, Brun C, Cren T, Carbillet C, Debontridder F, Ilin K, Siegel M, Semenov A, Hübers H W and Roditchev D 2013 Phys. Rev. B 88 014503
|
[24] |
Georgiou T, Jalil R, Belle B D, Britnell L, Gorbachev R V, Morozov S V, Kim Y J, Gholinia A, Haigh S J, Makarovsky O, Eaves L, Ponomarenko L A, Geim A K, Novoselov K S and Mishchenko A 2013 Nat. Nanotechnol. 8 100
|
[25] |
Takayanagi H and Kawakami T 1985 Phys. Rev. Lett. 54 2449
|
[26] |
McMillan W L 1968 Phys. Rev. 175 537
|
[27] |
Zhang L, Yan Y, Wu H C, Yu D P, Liao Z M 2016 ACS Nano. 10 3816
|
[28] |
Britnell L, Gorbachev R V, Jalil R, Belle B D, Schedin F, Mishchenko A, Georgiou T, Katsnelson M I, Eaves L, Morozov S V, Peres N M R, Leist J, Geim A K, Novoselov K S and Ponomarenko L A 2012 Science 335 947
|
[29] |
Kleinsasser A W, Miller R E, Mallison W H and Arnold G B 1994 Phys. Rev. Lett. 72 1738
|
[30] |
Blonder G E, Tinkham M and lapwijk T M K 1982 Phys. Rev. B 25 4515
|
[31] |
Tkachov G and Fal'ko V I 2004 Phys. Rev. B 69 092503
|
[32] |
Kleinsasser A W and Kastalsky A 1993 Phys. Rev. B. 47 8361
|
[33] |
Koppinen P J, Kühn T and Maasilta I J 2009 J. Low Temp. Phys. 154 179
|
[34] |
Dynes R C, Narayanamurti V and Garno J P 1978 Phys. Rev. Lett. 41 1509
|
[35] |
MolinaS ánchez A, Sangalli D, Hummer K, Marini A and Wirtz L 2013 Phys. Rev. B 88 045412
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|