CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Anomalous Josephson current in quantum anomalous Hall insulator-based superconducting junctions with a domain wall structure |
Qing Yan(闫青)1,2, Yan-Feng Zhou(周彦峰)3, Qing-Feng Sun(孙庆丰)1,2,4 |
1 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China; 2 Collaborative Innovation Center of Quantum Matter, Beijing 100871, China; 3 Department of Physics, University of Texas at Dallas, Richardson, Texas 75080, USA; 4 CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China |
|
|
Abstract We theoretically study the Josephson effect in a quantum anomalous Hall insulator (QAHI) nanoribbon with a domain wall structure and covered by the superconductor. The anomalous Josephson current, the nonzero supercurrent at the zero superconducting phase difference, appears with the nonzero magnetization and the suitable azimuth angle of the domain wall. Dependent on the configuration of the domain wall, the anomalous current peaks in the Bloch type but disappears in the Néel type because the y-component of magnetization is necessary to break symmetry to arouse the anomalous current. The phase shift of the anomalous current is tunable by the magnetization, the azimuth angle, or the thickness of the domain wall. By introducing a bare QAHI region in the middle of the junction which is not covered by the superconductor, the anomalous Josephson effect is enhanced such that the phase shift can exceed π. Thus, a continuous change between 0 and π junctions is realized via regulating the configuration of the domain wall or the magnetization strength. As long as an s-wave superconductor is placed on the top of the QAHI with a domain wall structure, this proposal can be experimentally fabricated and useful for the phase battery or superconducting quantum bit.
|
Received: 08 May 2020
Revised: 20 June 2020
Accepted manuscript online: 03 July 2020
|
PACS:
|
74.45.+c
|
(Proximity effects; Andreev reflection; SN and SNS junctions)
|
|
75.60.Ch
|
(Domain walls and domain structure)
|
|
73.23.-b
|
(Electronic transport in mesoscopic systems)
|
|
Fund: Project supported by the National Key R&D Program of China (Grant No. 2017YFA0303301), the National Natural Science Foundation of China (Grant Nos. 11921005 and 11574007), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000), and Beijing Municipal Science & Technology Commission, China (Grant No. Z191100007219013). |
Corresponding Authors:
Qing-Feng Sun
E-mail: sunqf@pku.edu.cn
|
Cite this article:
Qing Yan(闫青), Yan-Feng Zhou(周彦峰), Qing-Feng Sun(孙庆丰) Anomalous Josephson current in quantum anomalous Hall insulator-based superconducting junctions with a domain wall structure 2020 Chin. Phys. B 29 097401
|
[1] |
Josephson B 1962 Phys. Lett. 1 251
|
[2] |
Anderson P W and Rowell J M 1963 Phys. Rev. Lett. 10 230
|
[3] |
Makhlin Y, Schön G and Shnirman A 2001 Rev. Mod. Phys. 73 357
|
[4] |
Xu W Z, Qin L X, Ye X G, Lin Fang, Yu D P and Liao Z M 2020 Chin. Phys. B 29 057502
|
[5] |
Golubov A A, Kupriyanov M Y and Il'ichev E 2004 Rev. Mod. Phys. 76 411
|
[6] |
Bulaevskii L N, Kuzii V V and Sobyanin A A 1977 JETP Lett. 25 290
|
[7] |
Ryazanov V V, Veretennikov A V, Oboznov V A, Rusanov A Y, Larkin V A, Golubov A A and Aarts J 2000 Physica C 341-348 1613
|
[8] |
Ryazanov V V, Oboznov V A, Rusanov A Y, Veretennikov A V, Golubov A A and Aarts J 2001 Phys. Rev. Lett. 86 2427
|
[9] |
Zhu Y, Li W, Lin T H and Sun Q F 2002 Phys. Rev. B 66 134507
|
[10] |
Zeng W and Shen R 2018 Chin. Phys. B 27 097401
|
[11] |
Cheng Q and Sun Q F 2019 Phys. Rev. B 99 184507
|
[12] |
Krive I V, Gorelik L Y, Shekhter R I and Jonson M 2004 Low Temp. Phys. 30 398
|
[13] |
Krive I V, Kadigrobov A M, Shekhter R I and Jonson M 2005 Phys. Rev. B 71 214516
|
[14] |
Buzdin A 2008 Phys. Rev. Lett. 101 107005
|
[15] |
Reynoso A A, Usaj G, Balseiro C A, Feinberg D and Avignon M 2008 Phys. Rev. Lett. 101 107001
|
[16] |
Szombati D B, Nadj-Perge S, Car D, Plissard S R, Bakkers E P A M and Kouwenhoven L P 2016 Nat. Phys. 12 568
|
[17] |
Pal S and Benjamin C 2019 Europhys. Lett. 126 57002
|
[18] |
Yokoyama T, Eto M and Nazarov Y V 2013 J. Phys. Soc. Jpn. 82 054703
|
[19] |
Yokoyama T, Eto M and Nazarov Y V 2014 Phys. Rev. B 89 195407
|
[20] |
Nesterov K N, Houzet M and Meyer J S 2016 Phys. Rev. B 93 174502
|
[21] |
Zazunov A, Egger R, Jonckheere T and Martin T 2009 Phys. Rev. Lett. 103 147004
|
[22] |
Cheng S G, Xing Y X, Xie X C and Sun Q F 2009 Eur. Phys. J. B 67 551
|
[23] |
Brunetti A, Zazunov A, Kundu A and Egger R 2013 Phys. Rev. B 88 144515
|
[24] |
Liu J F and Chan K S 2010 Phys. Rev. B 82 125305
|
[25] |
Dolcini F, Houzet M and Meyer J S 2015 Phys. Rev. B 92 035428
|
[26] |
Sakurai K, Ikegaya S and Asano Y 2017 Phys. Rev. B 96 224514
|
[27] |
Minutillo M, Giuliano D, Lucignano P, Tagliacozzo A and Campagnano G 2018 Phys. Rev. B 98 144510
|
[28] |
Liu J F and Chan K S 2010 Phys. Rev. B 82 184533
|
[29] |
Ouassou J A and Linder J 2019 Phys. Rev. B 99 214513
|
[30] |
Silaev M A, Tokatly I V and Bergeret F S 2017 Phys. Rev. B 95 184508
|
[31] |
Assouline A, Feuillet-Palma C, Bergeal N et al. 2019 Nat. Commun. 10 126
|
[32] |
Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
|
[33] |
Liu C X, Zhang S C and Qi X L 2016 Annu. Rev. Condens. Matter Phys. 7 301
|
[34] |
Tokura Y, Yasuda K and Tsukazaki A 2019 Nat. Rev. Phys. 1 126
|
[35] |
Chang C Z, Liu M H, Zhang Z C, Wang Y Y, He K and Xue Q K 2016 Sci. Chin.-Phys. Mech. Astron. 59 637501
|
[36] |
He K, Ma X C, Chen X, Lü L, Wang Y Y and Xue Q K 2013 Chin. Phys. B 22 067305
|
[37] |
Yu R, Zhang W, Zhang H J, Zhang S C, Dai X and Fang Z 2010 Science 329 61
|
[38] |
Chang C Z, Zhang J S, Feng X et al. 2013 Science 340 167
|
[39] |
Dziom V, Shuvaev A, Pimenov A et al. 2017 Nat. Commun. 8 15197
|
[40] |
Xiao D, Jiang J, Shin J H et al. 2018 Phys. Rev. Lett. 120 056801
|
[41] |
Chen B, Fei F C, Zhang D Q et al. 2019 Nat. Commun. 10 4469
|
[42] |
Kou X F, Guo S T, Fan Y B et al. 2014 Phys. Rev. Lett. 113 137201
|
[43] |
Chang C Z, Zhao W W, Kim D Y, Zhang H J, Assaf B A, Heiman D, Zhang S C, Liu C X, Chan M H M and Moodera J S 2015 Nat. Mater. 14 473
|
[44] |
Sun H H and Jia J F 2017 Sci. Chin.-Phys. Mech. Astron. 60 057401
|
[45] |
Li J H, Li Y, Du S Q, Wang Z, Gu B L, Zhang S C, He K, Duan W H and Xu Y 2019 Sci. Adv. 5 eaaw5685
|
[46] |
Gong Y, Guo J W, Li J H et al. 2019 Chin. Phys. Lett. 36 076801
|
[47] |
Deng Y J, Yu Y J, Shi M Z, Guo Z X, Xu Z H, Wang J, Chen X H and Zhang Y B 2020 Science 367 895
|
[48] |
Hubert A and Schäfer R 2009 Magnetic Domains: The Analysis of Magnetic Microstructures 2nd edn (Berlin: Springer) p. 201
|
[49] |
Spaldin N A 2010 Magnetic Materials: Fundamentals and Applications 2nd edn (Cambridge: Cambridge University Press) p. 85
|
[50] |
Li Z D, Hu Y C, He P B and Sun L L 2018 Chin. Phys. B 27 077505
|
[51] |
Liu L, Chen W X, Wang R Q and Hu L B 2018 Chin. Phys. B 27 047201
|
[52] |
Chen G, Ma T P, N'Diaye A T, Kwon H, Won C Y, Wu Y Z and Schmid A K 2013 Nat. Commun. 4 2671
|
[53] |
Landau L and Lifshitz E 1935 Phys. Z. Sowjetunion 8 153
|
[54] |
Chen G, Zhu J, Quesada A et al. 2013 Phys. Rev. Lett. 110 177204
|
[55] |
Yasuda K, Mogi M, Yoshimi R, Tsukazaki A, Takahashi K S, Kawasaki M, Kagawa F and Tokura Y 2017 Science 358 1311
|
[56] |
Wang J, Zhou Q, Lian B and Zhang S C 2015 Phys. Rev. B 92 064520
|
[57] |
Zhou Y F, Hou Z, Lv P, Xie X C and Sun Q F 2018 Sci. Chin.-Phys. Mech. Astron. 61 127811
|
[58] |
Zheng H and Jia J F 2019 Chin. Phys. B 28 067403
|
[59] |
Yan Q, Zhou Y F and Sun Q F 2019 Phys. Rev. B 100 235407
|
[60] |
Ding Y, Shen J, Pang Y, Liu G T, Fan J, Ji Z Q, Yang C L and Lü L 2013 Acta Phys. Sin. 62 167401 (in Chinese)
|
[61] |
Li C A, Li J and Shen S Q 2019 Phys. Rev. B 99 100504(R)
|
[62] |
Zhou Y F, Hou Z and Sun Q F 2018 Phys. Rev. B 98 165433
|
[63] |
Datta S 1995 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press) pp. 141-151
|
[64] |
Qi X L, Hughes T L and Zhang S C 2010 Phys. Rev. B 82 184516
|
[65] |
Likharev K K 1979 Rev. Mod. Phys. 51 101
|
[66] |
Anderson P W and Dayem A H 1964 Phys. Rev. Lett. 13 195
|
[67] |
Baratoff A, Blackburnf J A and Schwartzf B B 1970 Phys. Rev. Lett. 25 1096
|
[68] |
Gregers-Hansen P E, Levinsen M T and Pedersen G F 1972 J. Low Temp. Phys. 7 99
|
[69] |
Sun Q F, Wang J and Lin T H 1999 Phys. Rev. B 59 3831
|
[70] |
Sun Q F, Wang B G, Wang J and Lin T H 2000 Phys. Rev. B 61 4754
|
[71] |
Sun Q F, Guo H and Wang J 2002 Phys. Rev. B 65 075315
|
[72] |
Li Y H, Liu J, Song J T, Jiang H, Sun Q F and Xie X C 2018 Sci. Chin.-Phys. Mech. Astron. 61 97411
|
[73] |
Cuevas J C, Martín-Rodero A and Yeyati A L 1996 Phys. Rev. B 54 7366
|
[74] |
Dresselhaus M S, Dresselhaus G and Jorio A 2008 Group Theory: Application to the Physics of Condensed Matter (Berlin: Springer) p. 403
|
[75] |
Ji Y Q, Niu Z P, Feng C D and Xing D Y 2008 Chin. Phys. Lett. 25 691
|
[76] |
Clarke J and Pippard A B 1969 Proc. R. Soc. Lond. A 308 447
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|