Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(3): 037404    DOI: 10.1088/1674-1056/ac3cb1
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Dynamic vortex Mott transition in triangular superconducting arrays

Zi-Xi Pei(裴子玺)1,2, Wei-Gui Guo(郭伟贵)1,2, and Xiang-Gang Qiu(邱祥冈)1,2,3,†
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Collaborative Innovation Center of Quantum Matter, Beijing 100084, China
Abstract  The proximity-coupled superconducting island arrays on a metallic film provide an ideal platform to study the phase transition of vortex states under mutual interactions between the vortex and potential landscape. We have developed a top-down microfabrication process for Nb island arrays on Au film by employing an Al hard mask. A current-induced dynamic vortex Mott transition has been observed under the perpendicular magnetic fields of $f$ magnetic flux quantum per unit cell, which is characterized by a dip-to-peak reversal in differential resistance d$V$/d$I$ vs. $f$ curve with the increasing current. The d$V$/d$I$ vs. $I$ characteristics show a scaling behavior near the magnetic fields of $f= {1}/{2}$ and $f=1$, with the critical exponents $\varepsilon$ of 0.45 and 0.3, respectively, suggesting different universality classes at these two fields.
Keywords:  microfabrication      superconducting array      Mott transition  
Received:  04 November 2021      Revised:  22 November 2021      Accepted manuscript online:  24 November 2021
PACS:  74.25.Uv (Vortex phases (includes vortex lattices, vortex liquids, and vortex glasses))  
  74.45.+c (Proximity effects; Andreev reflection; SN and SNS junctions)  
  81.16.Rf (Micro- and nanoscale pattern formation)  
Fund: X.G.Q. acknowledges the support from the National Natural Science Foundation of China (Grant Nos. 11974412 and 11774400) and the National Key R&D Program of China (Grant Nos. 2017YFA0302903 and 2018YFA0305703).
Corresponding Authors:  Xiang-Gang Qiu     E-mail:  xgqiu@iphy.ac.cn

Cite this article: 

Zi-Xi Pei(裴子玺), Wei-Gui Guo(郭伟贵), and Xiang-Gang Qiu(邱祥冈) Dynamic vortex Mott transition in triangular superconducting arrays 2022 Chin. Phys. B 31 037404

[1] Benz S P, Rzchowski M S, Tinkham M and Lobb C J 1990 Phys. Rev. B 42 6165
[2] Eley S, Gopalakrishnan S, Goldbart P M and Mason N 2012 Nat. Phys. 8 59
[3] Poccia N, Baturina T I, Coneri F, Molenaar C G, Wang X R, Bianconi G, Brinkman A, Hilgenkamp H, Golubov A A and Vinokur V M 2015 Science 349 1202
[4] Lankhorst M and Poccia N 2016 J. Supercond. Nov. Magn. 29 623
[5] Lankhorst M, Poccia N, Stehno M P, Galda A, Barman H, Coneri F, Hilgenkamp H, Brinkman A, Golubov A A, Tripathi V, Baturina T I and Vinokur V M 2018 Phys. Rev. B 97 020504
[6] Newrock R S, Lobb C J, Geigenmüller U and Octavio M 2000 Solid State Phys. 54 263
[7] Rzchowski M S, Benz S P, Tinkham M and Lobb C J 1990 Phys. Rev. B 42 2041
[8] Dang E K F and Gyorffy B L 1993 Phys. Rev. B 47 3290
[9] Yu W and Stroud D 1994 Phys. Rev. B 49 6174
[10] Nelson D R and Vinokur V M 1993 Phys. Rev. B 48 13060
[11] Jiang Z, Dikin D A, Chandrasekhar V, Metlushko V V and Moshchalkov V V 2004 Appl. Phys. Lett. 84 5371
[12] Granato E 2018 Phys. Rev. B 98 094511
[13] Granato E 2019 Phys. Rev. B 100 104517
[14] Rademaker L, Vinokur V M and Galda A 2017 Sci. Rep. 7 1
[15] Durkin M, Mondragon-Shem I, Eley S, Hughes T L and Mason N 2016 Phys. Rev. B 94 024510
[16] Lobb C J, Abraham D W and Tinkham M 1983 Phys. Rev. B 27 150
[17] Lin Y L and Nori F 2002 Phys. Rev. B 65 214504
[18] Teitel S and Jayaprakash C 2016 Phys. Rev. Lett. 51 1999
[19] Blatter G, Feigelman M V, Geshkenbein V B, Larkin A I and Vinokur V M 1994 Rev. Mod. Phys. 66 1125
[20] Rozenberg M J, Chitra R and Kotliar G 1999 Phys. Rev. Lett. 83 3498
[1] Design, fabrication, and characterization of Ti/Au transition-edge sensor with different dimensions of suspended beams
Hong-Jun Zhang(张宏俊), Ji Wen(文继), Zhao-Hong Mo(莫钊洪), Hong-Rui Liu(刘鸿瑞), Xiao-Dong Wang(汪小东), Zhong-Hua Xiong(熊忠华), Jin-Wen Zhang(张锦文), and Mao-Bing Shuai(帅茂兵). Chin. Phys. B, 2021, 30(11): 117401.
[2] Mott transition in ruby lattice Hubbard model
An Bao(保安). Chin. Phys. B, 2019, 28(5): 057101.
[3] Etching-assisted femtosecond laser microfabrication
Monan Liu(刘墨南), Mu-Tian Li(李木天), Han Yang(杨罕), Hong-Bo Sun(孙洪波). Chin. Phys. B, 2018, 27(9): 094212.
[4] Doping-driven orbital-selective Mott transition in multi-band Hubbard models with crystal field splitting
Yilin Wang(王义林), Li Huang(黄理), Liang Du(杜亮), Xi Dai(戴希). Chin. Phys. B, 2016, 25(3): 037103.
[5] A grooved planar ion trap design for scalable quantum information processing
Ji Wei-Bang(冀炜邦), Wan Jin-Yin(万金银), Cheng Hua-Dong(成华东), and Liu Liang(刘亮) . Chin. Phys. B, 2012, 21(6): 063701.
No Suggested Reading articles found!